• HDOJ 6991 Increasing Subsequence


    题目链接

    HDOJ 6991 Increasing Subsequence (Minieye 杯联赛第四场 T7)

    题目大意

    定义极大上升子序列为「不为任意一个上升子序列的真子集」的上升子序列,给定一个长度为 (n) 的排列,求其极大上升子序列个数,答案对 (998244353) 取模。

    (1leq nleq 10^5)

    思路

    观察 极大上升子序列 的定义,可以发现其等价于要求序列的相邻两项 (i,j)​​,满足 (forall i<k<j,;a_k<a_iigvee a_k>a_j)​​​ ,于是可以考虑 (dp),记 (dp_i) 为以 (a_i) 结尾的极大上升子序列的数量,则 (dp_j)(dp_i) 转移的条件如上,相当于在去除大于 (a_i) 的元素之后,(a_j) 是从 (i) 往前的后缀最大值。而初值 (dp_i=[a_i=min_{1leq jleq i}{a_j}]),当 (a_i) 是前缀最小值时才能作为一个极大上升子序列的开头,答案为所有后缀最大值位置的 (dp) 值之和。

    朴素地做是 (O(n^2))​ 的,想了半天没有找到用数据结构优化转移的做法,难点在对于每个 (a_i)​ 转移位置构成的单调序列,它们之间没有什么有用的共同点,这个时候可以尝试换个角度,考虑使用分治。这样问题就转化成了对于区间 ([l,r])​,如何将左半区间的 (dp)​​​ 值转移到右半边上。

    观察上图,对于当前在计算的点 (a_i),我们需要找到在 (i) 前面的右半区间中,最大的比 (a_i) 小的元素 (a_j),能够向 (dp_i) 转移的 (k) 都需要满足 (a_j<a_k<a_i),即两虚线所夹的区域,同时在左半区间内,这些可以转移的点还构成从右往左的单增序列,不在序列内的则无法转移。

    观察到这些性质,肯定是要用单调数据结构来维护这些转移点,注意到右半区间「最大的比 (a_i) 小的点」以及左半区间随着红线上升,转移点时刻呈单减序列,可以想到用两个以 (a_i) 作为顺序,(i)​ 作为关键字的单调栈 (left,right) 来维护这些信息。具体来说,我们按照 (a_i) 从小到大逐个把点加入左/右半区间的单调栈中,右半区间加入一个 (a_i)​ 时,(right) 的顶部剩下来的即为 (j),然后在 (left) 中找到第一个 (>a_j) 的位置 (pos),则 (left) 栈中 ([pos,end]) 上的所有位置都可转移到 (dp_i)​,我们同时随着 (left) 维护一个前缀和即可 (O(1)) 进行转移。

    二分 (pos)(O(log n)) 的,所以时间复杂度 (O(nlog^2n))

    Code

    #include<iostream>
    #include<algorithm>
    #include<vector>
    #include<numeric>
    #define rep(i,a,b) for(int i = (a); i <= (b); i++)
    #define per(i,b,a) for(int i = (b); i >= (a); i--)
    #define N 101000
    #define ll long long
    #define mod 998244353
    #define Inf 0x3f3f3f3f
    using namespace std;
    
    int a[N], n;
    ll sum[N], dp[N];
    
    bool cmp(int i, int j){ return a[i] < a[j]; }
    
    void solve(int l, int r){
        if(l == r) return;
        int mid = (l+r)>>1;
        solve(l, mid);
    
        vector<int> pos(r-l+1);
        vector<int> left, right;
        iota(pos.begin(), pos.end(), l);
        sort(pos.begin(), pos.end(), cmp);
        for(int i : pos){
            if(i <= mid){
                while(!left.empty() && left.back() < i) left.pop_back();
                left.push_back(i);
                int siz = left.size();
                sum[siz] = sum[siz-1]+dp[i]; 
            } else{
                while(!right.empty() && right.back() > i) right.pop_back();
                if(left.empty()) continue;
                int lb = right.empty() ? 0 : lower_bound(left.begin(), left.end(), right.back(), cmp) - left.begin();
                (dp[i] += sum[left.size()] - sum[lb] + mod) %= mod;
                right.push_back(i);
            }
        }
        solve(mid+1, r);
    }
    
    int main(){
        ios::sync_with_stdio(false);
        int T; cin>>T;
        while(T--){
            cin>>n;
            rep(i,1,n) cin>>a[i];
    
            int mn = Inf;
            rep(i,1,n){
                if(mn > a[i]) mn = a[i], dp[i] = 1;
                else dp[i] = 0;
            }
            solve(1, n);
            int mx = 0;
            ll ans = 0;
            per(i,n,1) if(mx < a[i]) mx = a[i], (ans += dp[i]) %= mod;
    
            cout<< ans <<endl;
        }
        return 0;
    }
    
  • 相关阅读:
    ABBYY Cup 3.0G3. Good Substrings
    Codeforces Beta Round #94 (Div. 1 Only)B. String sam
    hdu5421Victor and String 两端加点的pam
    loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
    Codeforces Round #349 (Div. 1)E. Forensic Examination
    ACM-ICPC World Finals 2019 G.First of Her Name
    51nod1647 小Z的trie
    LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci 题解
    POJ 2443 Set Operation 题解
    CSP-J 2019游记
  • 原文地址:https://www.cnblogs.com/Neal-lee/p/15085094.html
Copyright © 2020-2023  润新知