Description
在一个 (2) 维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段 (AB) 和线段 (CD) 。在 (AB) 上的移动速度为 (P) ,在 (CD) 上的移动速度为 (Q) ,在平面上的移动速度 (R) 。现在从 (A) 点走到 (D) 点,他想知道最少需要走多长时间。
(1leq A_x,A_y,B_x,B_y,C_x,C_y,D_x,D_yleq 1000,1leq P,Q,Rleq 10)
Solution
我们大胆猜想不用求证小心求证。我们猜测当我们来枚举在 (AB) 上的离开点和 (CD) 上的进入点时,是两个单峰函数。
那么直接用三分法求解了。注意要特判线段退化成点的情况。
至于证明,都说了不用求证小心求证。详见链接:->戳我<-
Code
//It is made by Awson on 2018.3.1
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('
'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const double eps = 1e-4;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }
double xa, ya, xb, yb, xc, yc, xd, yd, p, q, r, ans;
double e, f, g, h, i, j;
double dist(double a, double b, double c, double d) {
#define sqr(x) ((x)*(x))
double ans = 0;
ans += sqrt(sqr(a-e)+sqr(b-f))/p;
ans += sqrt(sqr(a-c)+sqr(b-d))/r;
ans += sqrt(sqr(c-g)+sqr(d-h))/q;
return ans;
}
double count(double x, double y) {
xc = i, yc = j, xd = g, yd = h;
double ans = dist(x, y, xd, yd);
while (true) {
if (fabs(yc-yd) <= eps && fabs(xc-xd) <= eps) break;
double xm1 = (xc*2+xd)/3., xm2 = (xc+xd*2)/3.;
double ym1 = (yc*2+yd)/3., ym2 = (yc+yd*2)/3.;
double c1 = dist(x, y, xm1, ym1), c2 = dist(x, y, xm2, ym2);
if (c1 > c2) xc = xm1, yc = ym1, ans = c2; else xd = xm2, yd = ym2, ans = c1;
}
return ans;
}
void work() {
scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf", &xa, &ya, &xb, &yb, &xc, &yc, &xd, &yd, &p, &q, &r);
e = xa, f = ya, g = xd, h = yd, i = xc, j = yc; ans = count(xa, ya);
while (true) {
if (fabs(ya-yb) <= eps && fabs(xa-xb) <= eps) break;
double xm1 = (xa*2+xb)/3., xm2 = (xa+xb*2)/3.;
double ym1 = (ya*2+yb)/3., ym2 = (ya+yb*2)/3.;
double c1 = count(xm1, ym1), c2 = count(xm2, ym2);
if (c1 > c2) xa = xm1, ya = ym1, ans = c2; else xb = xm2, yb = ym2, ans = c1;
}
printf("%.2lf
", ans);
}
int main() {
work(); return 0;
}