Problem Description
There are n apple trees planted along a cyclic road, which is L metres long. Your storehouse is built at position 0 on that cyclic road.
The ith tree is planted at position xi, clockwise from position 0. There are ai delicious apple(s) on the ith tree.
You only have a basket which can contain at most K apple(s). You are to start from your storehouse, pick all the apples and carry them back to your storehouse using your basket. What is your minimum distance travelled?
1≤n,k≤105,ai≥1,a1+a2+…+an≤105
1≤L≤109
0≤x[i]≤L
There are less than 20 huge testcases, and less than 500 small testcases.
Input
First line: t, the number of testcases.
Then t testcases follow. In each testcase:
First line contains three integers, L,n,K.
Next n lines, each line contains xi,ai.
Output
Output total distance in a line for each testcase.
Sample Input
2
10 3 2
2 2
8 2
5 1
10 4 1
2 2
8 2
5 1
0 10000
Sample Output
18
26
Source
2015 Multi-University Training Conest 2
这题若是道路不是圈的话,就左右两边贪心可得最短路程,但由于道路是圆圈,所以可以走整圈。具体的分析在代码。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<set>
#include<queue>
#include<set>
#include<vector>
#include<math.h>
#define LL long long
const int N=100000+50;
using namespace std;
int X[N],a[N],b[N];
LL sum1[N],sum2[N];
int main()
{
int t,l,num,k;
cin>>t;
while(t--)
{
memset(a,0,sizeof(a)) ;
memset(b,0,sizeof(b)) ;
memset(sum1,0,sizeof(sum1)) ;
memset(sum2,0,sizeof(sum2)) ;
cin>>l>>num>>k;
int x,y;
int n=0;
while(num--)
{
cin>>x>>y;
for(int i=1;i<=y;i++)
X[++n]=x;//先求出每个苹果的位置。
}
int n1=0,n2=0;
for(int i=1;i<=n;i++)
{
if(2*X[i]<=l)
a[++n1]=X[i];//原点右边的每个苹果所在的位置
else
b[++n2]=l-X[i];//原点左边的每个苹果所在的位置
}
sort(a+1,a+1+n1);
sort(b+1,b+1+n2);
sum1[0]=sum2[0]=0;
for(int i=1;i<=n1;i++)
{
if(i<=k)
sum1[i]=a[i];
else
sum1[i]=sum1[i-k]+a[i];
} //算出摘完右边的苹果所用的的路程
for(int i=1;i<=n2;i++)
{
if(i<=k)
sum2[i]=b[i];
else
sum2[i]=sum2[i-k]+b[i];
}//算出摘完左边的苹果所用的的路程
LL ans=(sum1[n1]+sum2[n2])*2;
for(int i=0;i<=n1&&i<=k;i++)//枚举若是摘右边的苹果时走整圈时的距离,然后和不走整圈时哪个答案小
{
int left=n1-i;//右边所剩的苹果数
int right=max(0,n2-(k-i));//装完篮子后左边所剩的苹果数
ans=min(ans,l+(sum1[left]+sum2[right])*2);
}
printf("%lld
",ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。