• loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】


    题目链接

    loj2542

    题解

    (f[i][S])表示从(i)节点出发,走完(S)集合中的点的期望步数
    (de[i])(i)的度数,(E)为边集,我们很容易写出状态转移方程
    ①若(i otin S)

    [f[i][S] = frac{1}{de[i]}sumlimits_{(i,j) in E}(f[j][S] + 1) ]

    ②若(i in S)
    除非({i} = S)(f[i][S] = 0)
    否则

    [f[i][S] = frac{1}{de[i]}sumlimits_{(i,j) in E}(f[j][S - {i}] + 1) ]

    容易发现转移到的集合(S')要么是(S),要么是更小的集合(S - {i})
    状态数是(O(n2^{n})),如果我们按(S)逐一从小计算,计算当前(S)时,转移到的(S - {i})则可以直接算出
    而如果转移到当前的(S),这个方程则有了后效性
    直接高斯消元是(O(n^{3}2^{n}))的,我们考虑如hdu Maze那题一样解出式子

    在集合(S)意义下【为了方便我们就省去S这维】,记(fa[i])(i)的父节点,我们不妨设

    [f[i] = A_if[fa[i]] + B_i ]

    ①若(i otin S)
    如果(i)为叶节点,那么(A_i = B_i = 1)
    否则有

    [egin{aligned} f[i] &= frac{1}{de[i]}sumlimits_{(i,j) in E}(f[j][S] + 1) \ &= frac{1}{d[i]}f[fa[i]] + frac{1}{de[i]}sum_{i = fa[j]}(A_jf[i] + B_j + 1) \ &= frac{1}{d[i] - sum_{i = fa[j]}A_j}f[fa[i]] + frac{sum_{i = fa[j]}(B_j + 1) + 1}{d[i] - sum_{i = fa[j]}A_j} end{aligned} ]

    所以

    [left{ egin{aligned} A_i &= frac{1}{d[i] - sum_{i = fa[j]}A_j} \ B_i &= frac{sum_{i = fa[j]}(B_j + 1) + 1}{d[u] - sum_{i = fa[j]}A_j} end{aligned} ight. ]

    可以由儿子递推

    ②若(i in S)
    除非({i} = S),此时(A_i = B_i = 0)
    否则(A_i = 0)(B_i = frac{1}{de[i]}sumlimits_{(i,j) in E}(f[j][S - {i}] + 1))

    计算出所有(A_i)(B_i)后回代可得到(f[i][S])
    至此可以(O(n2^n))预处理所有(f[i][S])
    然后做到(O(1))回答询问
    根本不需要什么minmax容斥,(O(3^n))子集枚举

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 19,maxm = (1 << 19),INF = 1000000000,P = 998244353;
    inline int read(){
    	int out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    int h[maxn],ne = 1,de[maxn];
    struct EDGE{int to,nxt;}ed[maxn << 1];
    inline void build(int u,int v){
    	ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
    	ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
    	de[u]++; de[v]++;
    }
    inline int qpow(int a,int b){
    	int re = 1;
    	for (; b; b >>= 1,a = 1ll * a * a % P)
    		if (b & 1) re = 1ll * re * a % P;
    	return re;
    }
    int in[maxn],f[maxn][maxm],nowS,n,Q,rt,maxv;
    int A[maxn],B[maxn],fa[maxn];
    void dfs(int u){
    	if (de[u] == 1 && u != rt){
    		if (in[u]){
    			A[u] = 0;
    			B[u] = (nowS ^ (1 << u - 1)) ? (f[fa[u]][nowS ^ (1 << u - 1)] + 1) % P : 0;
    		}
    		else A[u] = 1,B[u] = 1;
    		return;
    	}
    	if (in[u]){
    		A[u] = 0;
    		if (!(nowS ^ (1 << u - 1))) B[u] = 0;
    		else{
    			B[u] = 0;
    			int dv = qpow(de[u],P - 2),e = (nowS ^ (1 << u - 1));
    			Redge(u) B[u] = (B[u] + 1ll * dv * (f[to = ed[k].to][e] + 1) % P) % P;
    		}
    		Redge(u) if ((to = ed[k].to) != fa[u]){
    			fa[to] = u; dfs(to);
    		}
    		return;
    	}
    	int sa = 0,sb = 0;
    	Redge(u) if ((to = ed[k].to) != fa[u]){
    		fa[to] = u; dfs(to);
    		sa = (sa + A[to]) % P;
    		sb = (sb + B[to] + 1) % P;
    	}
    	int d = qpow(((de[u] - sa) % P + P) % P,P - 2);
    	if (u == rt) A[u] = 0,B[u] = 1ll * sb * d % P;
    	else A[u] = d,B[u] = 1ll * (sb + 1) % P * d % P;
    }
    void dfs2(int u){
    	if (u == rt) f[u][nowS] = B[u];
    	else f[u][nowS] = (1ll * A[u] * f[fa[u]][nowS] % P + B[u]) % P;
    	Redge(u) if ((to = ed[k].to) != fa[u]) dfs2(to);
    }
    int main(){
    	n = read(); Q = read(); rt = read(); maxv = (1 << n) - 1;
    	for (int i = 1; i < n; i++) build(read(),read());
    	REP(i,n) f[i][0] = 0;
    	for (nowS = 1; nowS <= maxv; nowS++){
    		REP(i,n) in[i] = ((nowS & (1 << i - 1)) > 0);
    		dfs(rt); dfs2(rt);
    	}
    	while (Q--){
    		int k = read(),S = 0;
    		while (k--) S |= (1 << (read() - 1));
    		printf("%d
    ",f[rt][S]);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    HDU 1856 More is better
    并查集模板
    HDU 1325 Is It A Tree?
    HDU 1272 小希的迷宫
    CodeVS 2639 约会计划
    POJ 1163 数字三角形
    HDU 1232 畅通工程
    HDU 1213 How Many Tables
    树形结构打印二叉树
    网址收藏
  • 原文地址:https://www.cnblogs.com/Mychael/p/9229291.html
Copyright © 2020-2023  润新知