题目
给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串。
输入格式
第一行是一个正整数n(n<=12),表示给定的字符串的个数。
以下的n行,每行有一个全由大写字母组成的字符串。每个字符串的长度不超过50.
输出格式
只有一行,为找到的最短的字符串T。在保证最短的前提下,
如果有多个字符串都满足要求,那么必须输出按字典序排列的第一个。
输入样例
2
ABCD
BCDABC
输出样例
ABCDABC
题解
写完状压dp后才知道可以用AC自动机水,而且十分简洁。。。
我还是说状压dp吧。。
思想简单却十分难写,,,
我们先将其它串的子串去掉,保证两两完全不包含
设(f[s][i])表示当前串集合为(s),最后一个为(i)号串的最小长度,同时记录一个(pre)数组记录状态转移的方向
再预处理一个(at[i][j])表示在(i)串后接(j)串增加的长度
转移十分显然,枚举下一个不在集合中的串,如果方案更优则转移,如果同样优,利用pre数组还原串比较字典序
所有的字符串比较之类的都可以直接暴力
虽然代码长了一点丑了一点,但是跑得飞快
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ULL unsigned long long int
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 15,maxm = (1 << 13),maxl = 55,INF = 1000000000;
struct String{
char s[maxl];
int len;
ULL h[maxl];
}S[maxn];
cp pre[maxm][maxn];
int n,at[maxn][maxn],f[maxm][maxn];
ULL P[1000];
void exclude(){
for (int i = 1; i <= n; i++){
for (int j = 1; j <= n; j++){
if (j != i && S[j].len >= S[i].len){
int flag = false,L = S[j].len - S[i].len + 1;
for (int k = 1; k <= L; k++){
if (S[i].h[S[i].len] == S[j].h[k + S[i].len - 1] - S[j].h[k - 1] * P[S[i].len]){
flag = true;
break;
}
}
if (flag){
swap(S[i--],S[n--]);
break;
}
}
}
}
//for (int i = 1; i <= n; i++)
// printf("%s
",S[i].s + 1);
}
void init(){
REP(i,n) REP(j,n) if (i != j){
for (int k = max(1,S[i].len - S[j].len + 1); k <= S[i].len; k++){
int L = S[i].len - k + 1;
if (S[j].h[L] == S[i].h[S[i].len] - S[i].h[k - 1] * P[L]){
at[i][j] = L;
break;
}
}
}
//REP(i,n) printf("%d ",at[1][i]); puts("");
}
char t1[1000],t2[1000];
int s1[55],s2[55],top1,top2,n1,n2;
int cmp(int a,int b,int c,int d,int x){
top1 = 0;
while (a && b){
s1[++top1] = b;
cp tmp = pre[a][b];
a = tmp.first;
b = tmp.second;
}
n1 = 0;
for (int i = top1,last = 1; i; i--){
int u = s1[i];
for (int j = last; j <= S[u].len; j++){
t1[++n1] = S[u].s[j];
}
last = at[u][s1[i - 1]] + 1;
}
if (x){
int l = at[s1[1]][x] + 1;
for (int i = l; i <= S[x].len; i++)
t1[++n1] = S[x].s[i];
}
top2 = 0;
while (c && d){
s2[++top2] = d;
cp tmp = pre[c][d];
c = tmp.first;
d = tmp.second;
}
n2 = 0;
for (int i = top2,last = 1; i; i--){
int u = s2[i];
for (int j = last; j <= S[u].len; j++){
t2[++n2] = S[u].s[j];
}
last = at[u][s2[i - 1]] + 1;
}
if (x){
int l = at[s2[1]][x] + 1;
for (int i = l; i <= S[x].len; i++)
t1[++n2] = S[x].s[i];
}
for (int i = 1; i <= n1; i++)
if (t1[i] != t2[i]) return t2[i] - t1[i];
return 0;
}
void print(int x){
int a = (1 << n) - 1,b = x;
top1 = 0;
//puts("");
while (a && b){
//puts(S[b].s + 1);
s1[++top1] = b;
cp tmp = pre[a][b];
a = tmp.first;
b = tmp.second;
}
n1 = 0;
for (int i = top1,last = 1; i; i--){
int u = s1[i];
for (int j = last; j <= S[u].len; j++){
t1[++n1] = S[u].s[j];
}
last = at[u][s1[i - 1]] + 1;
}
t1[n1 + 1] = ' ';
printf("%s
",t1 + 1);
}
void solve(){
fill(f[0],f[0] + maxm * maxn,INF);
int maxv = (1 << n) - 1;
for (int i = 1; i <= n; i++) f[1 << i - 1][i] = S[i].len;
for (int s = 0; s <= maxv; s++){
for (int i = 1; i <= n; i++){
if (!(s & (1 << i - 1))) continue;
for (int j = 1; j <= n; j++){
if ((s | (1 << j - 1)) != s){
int e = (s | (1 << j - 1)),len = S[j].len - at[i][j];
if (f[e][j] > f[s][i] + len){
f[e][j] = f[s][i] + len;
pre[e][j] = mp(s,i);
}
else if (f[e][j] == f[s][i] + len){
int tmp = cmp(s,i,pre[e][j].first,pre[e][j].second,j);
if (tmp > 0) pre[e][j] = mp(s,i);
}
}
}
}
}
int ans = 1;
for (int i = 2; i <= n; i++){
if (f[maxv][i] < f[maxv][ans] || (f[maxv][i] == f[maxv][ans] && cmp(maxv,i,maxv,ans,0) > 0)){
ans = i;
}
}
print(ans);
}
int main(){
P[0] = 1;
for (int i = 1; i < 1000; i++) P[i] = P[i - 1] * 107;
scanf("%d",&n);
for (int i = 1; i <= n; i++){
scanf("%s",S[i].s + 1);
S[i].len = strlen(S[i].s + 1);
for (int j = 1; j <= S[i].len; j++){
S[i].h[j] = S[i].h[j - 1] * 107 + S[i].s[j] - 'A';
}
}
exclude();
init();
solve();
return 0;
}