• BZOJ2818 GCD 【莫比乌斯反演】


    2818: Gcd

    Time Limit: 10 Sec Memory Limit: 256 MB
    Submit: 6826 Solved: 3013
    [Submit][Status][Discuss]
    Description

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
    数对(x,y)有多少对.
    Input

    一个整数N
    Output

    如题
    Sample Input

    4

    Sample Output

    4
    HINT

    hint

    对于样例(2,2),(2,4),(3,3),(4,2)

    1<=N<=10^7

    题解

    一般gcd一堆求和都是莫比乌斯
    我们设f(n)表示gcd等于n的对数
    我们设F(n)表示n|gcd的对数
    则有
    F(n)=Nn2
    f(n)=n|dμ(dn)F(d)
    =n|dμ(dn)Nn2
    =Ni=1μ(i)Nin2
    ans=NpprimeNi=1μ(i)Nip2
    =NT=1NT2Np|Tμ(Tp)
    至此我们可以枚举T,之后计算后边的和式就好了
    其实后边的和式可以预处理得到,我直接算也能过

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<bitset>
    #define LL long long int
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
    using namespace std;
    const int maxn = 10000005,maxm = 100005,INF = 1000000000;
    bitset<maxn> isn;
    int prime[maxn],primei,miu[maxn],N;
    void init(){
        miu[1] = 1;
        for (int i = 2; i <= N; i++){
            if (!isn[i]) prime[++primei] = i,miu[i] = -1;
            for (int j = 1; j <= primei && i * prime[j] <= N; j++){
                isn[i * prime[j]] = true;
                if (i % prime[j] == 0) {miu[i * prime[j]] = 0;break;}
                miu[i * prime[j]] = -miu[i];
            }
        }
    }
    int main(){
        cin>>N;
        init();
        LL ans = 0;
        for (int i = 1; i <= primei; i++){
            for (int j = 1; j <= N / prime[i]; j++)
                ans += (LL) miu[j] * (N / prime[i] / j) * (N / prime[i] / j);
        }
        cout<<ans<<endl;
        return 0;
    }
    
  • 相关阅读:
    Lucene基础排序算法改进
    大数据量的过滤 (用于爬虫,蜘蛛) Bloom Filter 布隆过滤器
    往空间,博客里添加音乐播放器
    汇编随笔
    一个女程序员的故事(酷壳陈皓)
    cmd 命令之删除整个文件夹
    亿度空间
    用wubi.exe安装ubuntu下载速度很慢怎么办?
    qtm第一次
    copy的妙用
  • 原文地址:https://www.cnblogs.com/Mychael/p/8282759.html
Copyright © 2020-2023  润新知