• 反向传播(Back Propagation)


    反向传播(Back Propagation)

        通常在设计好一个神经网络后,参数的数量可能会达到百万级别。而我们利用梯度下降去跟新参数的过程如(1)。但是在计算百万级别的参数时,需要一种有效计算梯度的方法,这种方法就是反向传播(简称BP), 因此BP并不是一种新的算法,使用BP就是能够使计算梯度时更加有效率。

                                     

      其中θ为神经网络的参数,为梯度。

    链式法则

       设有两个函数为y=g(x),z=h(y),那么要计算z对x导数,则计算过程如(2)

       

         设有三个函数为x=g(s),y=h(s),z=k(x,y),那么要计算z对x导数,则计算过程如(3)

       

    BP计算过程

        假定我们设计的神经网络结构如图1-1所示,其中yj神经网络为输出值,dh为隐藏层神经元的输出值,xi为输入值,bj、mh分别是隐藏层和输出层神经元的偏置;

    图1-1 神经网络结构

         设神经网络的损失函数为L(θ)(L(θ)具体的结构根据实际情况来确定,θ表示所有参数);wjh的更新形式为

          

       由于wjh是通过影响,继而影响yj,最终影响L(θ)。因此wjh的更新计算可以通过(2)的链式法则进行展开。

          

        其中,需要在确定激活函数和损失函数的具体结果后才就可以进行微分。而则可以在神经网络前向传播的过程中就可以计算,因此这一项的计算是自下向上,因此也称作forward pass

       类比于wjh的更新情况,bj的更新计算为

      再计算vhi的的更新情况,跟wjh的更新情况没有太大差别。vhi通过影响输入,继而影响dh,dh通过影响所有的输出层神经元的输入,继而影响输出值Y={y1,y2,...yl},最终影响L(θ),因此需要运用(3)进行链式法则展开

              

     

     其中(8)中的跟计算的部分项相同。因此,要计算下层参数的微积分,就需要计算上层参数的微积分。整个参数的更新计算自上向下,这个计算过程也称作backward pass

    参考资料

    [1]机器学习-李宏毅

    [2]《机器学习》-周志华

  • 相关阅读:
    (转)django上传文件
    django中的认证与登录
    django中的转义
    django中的request对象详解
    dotnetspider
    区块链试验
    管理员权限
    axure跨inframe传递参数
    python selenium chrome 测试
    python chrome selenium
  • 原文地址:https://www.cnblogs.com/MrPan/p/9502869.html
Copyright © 2020-2023  润新知