• 机器学习十讲--第二讲-回归


     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    import pandas as pd
    
    data = pd.read_csv("input/abalone_dataset.csv")
    
    print(data.shape)
    
    #绘图中文字体
    import matplotlib as mpl
    mpl.rcParams['font.sans-serif']=['SimHei']  # #指定默认字体 SimHei为黑体
    mpl.rcParams['axes.unicode_minus']=False  # #用来正常显示负号
    
    import matplotlib.pyplot as plt
    data["sex"].value_counts().sort_index().plot(kind="bar",title='sex')
    plt.show()
    
    #鲍鱼数据预处理
    sex_onehot = pd.get_dummies(data["sex"], prefix="sex")
    # sex_onehot.info()
    #参数axis=0表示上下合并,1表示左右合并,ignore_index=True表示忽略原来的索引
    data_new = pd.concat([data,sex_onehot],axis=1,ignore_index=False)
    data_new["ones"] = 1
    
    #环数 rings 加上 1.5 得到年龄
    data_new['age']=data_new['rings']+1.5
    # print(data_new)
    
    #构造两组特征集
    y = data_new["age"]
    features_with_ones = ["length","diameter","height","whole_weight","shucked_weight","viscera_weight","shell_weight","sex_F","sex_M","ones"]
    features_without_ones=["length","diameter","height","whole_weight","shucked_weight","viscera_weight","shell_weight","sex_F","sex_M"]
    x = data_new[features_with_ones]
    print(x)
    
    from sklearn import model_selection
    x_train,x_test,y_train,y_test = model_selection.train_test_split(x,y,test_size=0.2, random_state=111)
    
    from sklearn import linear_model
    lr = linear_model.LinearRegression()
    lr.fit(x_train[features_without_ones],y_train)
    
    from sklearn import linear_model
    ridge = linear_model.Ridge(alpha=1.0)
    ridge.fit(x_train[features_without_ones],y_train)
    
    from sklearn import linear_model
    lasso = linear_model.Lasso(alpha=0.01)
    lasso.fit(x_train[features_without_ones],y_train)
    
    #均方误差和决定系数 R^2
    from sklearn.metrics import mean_absolute_error
    y_test_pred_lr = lr.predict(x_test.iloc[:,:-1])
    print(round(mean_absolute_error(y_test,y_test_pred_lr),4))
    
    y_test_pred_ridge = ridge.predict(x_test[features_without_ones])
    print(round(mean_absolute_error(y_test,y_test_pred_ridge),4))
    
    y_test_pred_lasso = lasso.predict(x_test[features_without_ones])
    print(round(mean_absolute_error(y_test,y_test_pred_lasso),4))
    
    from sklearn.metrics import r2_score
    print(round(r2_score(y_test,y_test_pred_lr),4))
    print(round(r2_score(y_test,y_test_pred_ridge),4))
    print(round(r2_score(y_test,y_test_pred_lasso),4))
    
    #残差图是一种用来诊断回归模型效果的图。在残差图中,如果点随机分布在 0 附近,则说明回归效果较好。
    # 如果在残差图中发现了某种结构,则说明回归效果不佳,需要重新建模。
    plt.figure(figsize=(9, 6))
    y_train_pred_ridge = ridge.predict(x_train[features_without_ones])
    plt.scatter(y_train_pred_ridge, y_train_pred_ridge - y_train, c="g", alpha=0.6)
    plt.scatter(y_test_pred_ridge, y_test_pred_ridge - y_test, c="r",alpha=0.6)
    plt.hlines(y=0, xmin=0, xmax=30,color="b",alpha=0.6)
    plt.ylabel("Residuals")
    plt.xlabel("Predict")
    plt.show()
    
    #岭迹
    import numpy as np
    alphas = np.logspace(-10,10,20)
    coef = pd.DataFrame()
    for alpha in alphas:
        ridge_clf = linear_model.Ridge(alpha=alpha)
        ridge_clf.fit(x_train[features_without_ones],y_train)
        df = pd.DataFrame([ridge_clf.coef_],columns=x_train[features_without_ones].columns)
        df['alpha'] = alpha
        coef = coef.append(df,ignore_index=True)
    coef.head().round(decimals=2)
    #绘图
    plt.rcParams['figure.dpi'] = 300 #分辨率
    plt.figure(figsize=(9, 6))
    coef['alpha'] = coef['alpha']
    
    for feature in x_train.columns[:-1]:
        plt.plot('alpha',feature,data=coef)
    ax = plt.gca()
    ax.set_xscale('log')
    plt.legend(loc='upper right')
    plt.xlabel(r'$alpha$',fontsize=15)
    plt.ylabel('系数',fontsize=15)
    
    plt.show()
    
    #LASSO 的正则化路径
    coef = pd.DataFrame()
    for alpha in np.linspace(0.0001,0.2,20):
        lasso_clf = linear_model.Lasso(alpha=alpha)
        lasso_clf.fit(x_train[features_without_ones],y_train)
        df = pd.DataFrame([lasso_clf.coef_],columns=x_train[features_without_ones].columns)
        df['alpha'] = alpha
        coef = coef.append(df,ignore_index=True)
    coef.head()
    #绘图
    plt.figure(figsize=(9, 6))
    for feature in x_train.columns[:-1]:
        plt.plot('alpha',feature,data=coef)
    plt.legend(loc='upper right')
    plt.xlabel(r'$alpha$',fontsize=15)
    plt.ylabel('系数',fontsize=15)
    plt.show()
  • 相关阅读:
    九九乘法表
    User-Agent的获取方法
    web前端【第一篇】HTML基础一(标签)
    SQLAlchemy的简单使用
    MongoDB的简单使用
    redis简单使用
    MySQL数据库学习【第十二篇】pymysql模块
    MySQL数据库学习【第十一篇】IDE工具介绍及数据备份
    MySQL数据库学习【第十篇】(视图、触发器、事物)
    MySQL数据库学习【补充】mysql老是停止运行该怎么解决
  • 原文地址:https://www.cnblogs.com/MoooJL/p/14380056.html
Copyright © 2020-2023  润新知