• 【省选组】模拟 jzoj.3993 乾坤大挪移


     

    这题很容易可以转换模型,把操作一转换为纵坐标改变一个小于2*(l-1)的偶数的值,操作二转换为横纵坐标同时改变一个小于(l-1)的值。

    然后贪心处理。

    容易想到操作二最多进行一次,所以只要枚举是否进行操作二然后取最大值就可以了。

    有一个问题要注意,当操作二改变的值为(l-2)时,可能要再次改变一次(l-1)答案最优,此时可以转换为向右上角走一步然后用操作一走,步数都是两步。

    然后就是高精度除法的问题。

    可以考虑二分商然后判断。

    但是因为这题卡了时间,所以没过。

     

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define ll long long
    #define mo 1000000000
    #pragma GCC optimize(3)
    #define N 80
    using namespace std;
    ll T,i,bzp,p[N*10],len,sum,lp,mi[20];
    char ch[N];
    ll div(ll x,ll y){
        if (x%y==0) return x/y;
        return x/y+1;
    }
    struct bignum{
        ll x[N],len;
    }n,m,l,ans,ans1,temp,mx,L,R,mid,ansp,l2,l_1;
    ll pd(bignum a,bignum b){
        ll i;
        if (a.len<b.len) return 1;
        if (a.len>b.len) return 0;
        for (i=a.len;i>=1;i--){
            if (a.x[i]<b.x[i]) return 1;
            if (a.x[i]>b.x[i]) return 0;
        }
        return 0;
    }
    void swap1(bignum &a,bignum &b){
        temp=a;
        a=b;
        b=temp;
    }
    bignum add(bignum a,bignum b){
        ll i;
        if (pd(a,b))
            swap1(a,b);
        for (i=1;i<=a.len;i++){
            a.x[i]+=b.x[i];
            a.x[i+1]+=a.x[i]/mo;
            a.x[i]%=mo;
        }
        while (a.x[a.len+1]) a.len++;
        return a;
    }
    bignum add1(bignum a,ll b){
        ll k=1;
        a.x[1]+=b;
        while (a.x[k]>=mo){
            a.x[k+1]+=a.x[k]/mo;
            a.x[k]%=mo;
            k++;
        }
        while (a.x[a.len+1]) a.len++;
        return a;
    }
    bignum sub(bignum a,bignum b){
        ll i;
        for (i=1;i<=a.len;i++){
            a.x[i]-=b.x[i];
            if (a.x[i]<0) a.x[i]+=mo,a.x[i+1]--;
        }
        while (a.x[a.len]==0) a.len--;
        return a;
    }
    bignum sub1(bignum a,ll b){
        ll k=1;
        a.x[1]-=b;
        while (a.x[k]<0){
            a.x[k]+=mo;
            a.x[k+1]--;
            k++;
        }
        while (a.x[a.len]==0) a.len--;
        return a;
    }
    ll mod(bignum a,ll k){
        return a.x[1]%k;
    }
    void write(bignum a){
        ll i,j,n,x;
        printf("%lld",a.x[a.len]);
        for (i=a.len-1;i>=1;i--){
            x=a.x[i];
            n=0;
            while (x){
                n++;
                x/=10;
            }
            for (j=1;j<=9-n;j++) printf("0");
            printf("%lld",a.x[i]);
        }
        printf("
    ");
    }
    bignum mul(bignum a,bignum b){
        ll i,j;
        for (i=0;i<=temp.len;i++)
            temp.x[i]=0;
        temp.len=a.len+b.len-1;
        for (i=1;i<=a.len;i++){
            for (j=1;j<=b.len;j++){
                temp.x[i+j-1]+=a.x[i]*b.x[j];
                temp.x[i+j]+=temp.x[i+j-1]/mo;
                temp.x[i+j-1]%=mo;
            }
        }
        while (temp.x[temp.len+1]) temp.len++;
        return temp;
    }
    bignum div1(bignum a,ll b){
        ll i,r=0;
        for (i=a.len;i>=1;i--){
            r=r*mo+a.x[i];
            a.x[i]=r/b;
            r=r%b;
        }
        while (a.x[a.len]==0) a.len--;
        return a;
    }
    bignum div(bignum a,bignum b){
        ll i;
        for (i=0;i<=L.len;i++)
            L.x[i]=0;
        for (i=0;i<=ansp.len;i++)
            ansp.x[i]=0;
        L.len=1;L.x[1]=1;
        R=a;
        while (pd(R,L)==0){
            mid=div1(add(L,R),2);
            if (pd(mul(mid,b),a))
                L=add1(mid,1);
            else{
                R=sub1(mid,1);
                ansp=mid;
            }
        }
        return ansp;
    }
    int main(){
        freopen("move.in","r",stdin);
        freopen("move.out","w",stdout);
        scanf("%lld",&T);
        mx.len=N-1;
        for (i=1;i<N;i++)
            mx.x[i]=mo-1;
        mi[0]=1;
        for (i=1;i<=10;i++)
            mi[i]=mi[i-1]*10;
        while (T--){
            memset(n.x,0,sizeof(n.x));
            memset(m.x,0,sizeof(m.x));
            memset(l.x,0,sizeof(l.x));
            n.len=m.len=l.len=0;
            scanf("%s",ch+1);
            bzp=0;
            if (ch[1]=='-') bzp=1;
            len=strlen(ch+1)-bzp;
            for (i=bzp+1;i<=strlen(ch+1);i++)
                if (ch[i]!='-')
                    p[i-bzp]=ch[strlen(ch+1)-i+1+bzp]-'0';
            sum=0;
            lp=0;
            for (i=1;i<=len;i++){
                lp++;
                sum=p[i]*mi[lp-1]+sum;
                if (lp==9){
                    n.len++;
                    n.x[n.len]=sum;
                    lp=0;
                    sum=0;
                }
            }
            if (lp){
                n.len++;
                n.x[n.len]=sum;
            }
            
            scanf("%s",ch+1);
            bzp=0;
            if (ch[1]=='-') bzp=1;
            len=strlen(ch+1)-bzp;
            for (i=bzp+1;i<=strlen(ch+1);i++)
                if (ch[i]!='-')
                    p[i-bzp]=ch[strlen(ch+1)-i+1+bzp]-'0';
            sum=0;
            lp=0;
            for (i=1;i<=len;i++){
                lp++;
                sum=p[i]*mi[lp-1]+sum;
                if (lp==9){
                    m.len++;
                    m.x[m.len]=sum;
                    lp=0;
                    sum=0;
                }
            }
            if (lp){
                m.len++;
                m.x[m.len]=sum;
            }
            
            scanf("%s",ch+1);
            bzp=0;
            if (ch[1]=='-') bzp=1;
            len=strlen(ch+1)-bzp;
            for (i=bzp+1;i<=strlen(ch+1);i++)
                if (ch[i]!='-')
                    p[i-bzp]=ch[strlen(ch+1)-i+1+bzp]-'0';
            sum=0;
            lp=0;
            for (i=1;i<=len;i++){
                lp++;
                sum=p[i]*mi[lp-1]+sum;
                if (lp==9){
                    l.len++;
                    l.x[l.len]=sum;
                    lp=0;
                    sum=0;
                }
            }
            if (lp){
                l.len++;
                l.x[l.len]=sum;
            }
            if (pd(n,m))
                swap1(n,m);
            if (mod(n,2)!=mod(m,2)){
                printf("Poor MLG!
    ");
                continue;
            }
            ans=ans1=mx;
            l=sub1(l,1);
            l2=add(l,l);
            l_1=sub1(l,1);
            if (pd(l,m)==0){
                ans=add1(div(sub(n,m),l2),1);
                write(ans);
                continue;
            }
            if (mod(n,2)==1){
                if (pd(m,add(l,sub1(l,1)))==0)
                    ans1=add(div(add1(n,1),l2),div(add1(m,1),l2));
                if (mod(l,2)==1)
                    ans=add1(add(div(sub(n,l),l2),div(sub(m,l),l2)),1);
                else
                    ans=add1(add(div(sub(n,l_1),l2),div(sub(m,l_1),l2)),1);
            }
            else{
                ans1=add(div(n,l2),div(m,l2));
                if (mod(l,2)==0)
                    ans=add1(add(div(sub(n,l),l2),div(sub(m,l),l2)),1);
                else
                    ans=add1(add(div(sub(n,l_1),l2),div(sub(m,l_1),l2)),1);
                //write(sub(n,l));write(l2);
                //write(div(sub(n,l),l2));
            }
            if (pd(ans1,ans))
                write(ans1);
            else
                write(ans);
        }
        return 0;
    }

     

     

  • 相关阅读:
    45. 跳跃游戏 II
    BIO,AIO,NIO
    sqlyog连接阿里云mysql
    Hive的数据表HDFS的关系。
    云计算和虚拟机
    oracle入门笔记
    程序员开发协作管理工具
    IT行业的新思想来源
    docker所需的os基础
    docker源码和原理探究
  • 原文地址:https://www.cnblogs.com/Mohogany/p/13721465.html
Copyright © 2020-2023  润新知