• Gym 101470 题解


    A:Banks

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 1e5 + 100;
    int v[N];
    int ans = 0;
    int l[N], r[N];
    int main()
    {
        freopen("A.in", "r", stdin);
        int n;
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) scanf("%d", &v[i]);
        for(int i = 1; i < n; ++i)  r[i] = i + 1;
        r[n] = 1;
        for(int i = 2; i <= n; ++i) l[i] = i - 1;
        l[1] = n;
    
        int tot = 0, now = 1;
        while(true){
            if(tot == n)    break;
    
            if(v[now] < 0){
                v[r[now]] += v[now];
                v[l[now]] += v[now];
                v[now] = -v[now];
                tot = 1, ans++;
            }
            else{
                tot++;
            }
            now = r[now];
        }
    
        printf("%d
    ", ans);
        return 0;
    }
    View Code

    B:Circle of digits

    题意:有一个环形的字符串,现在让你把它切成n段,要求切了之后,所有的串的最大值最小。

    题解:我们可以知道 这长度为m的字符串中 最大值的那个字符串长度一定是m = n/k(向上取整), 故答案一定是从环上的每个点出发,然后走m步的串中的一个。 然后我们对这些答案排序, 排完序之后,二分答案。 然后对于每次二分完答案,我们都去check答案, 每次都往从1号位置枚举起点,枚举到m就够了,因为从m+1的位置出发一定是前面的一段的一个过程了,就不需要继续枚举答案了。

    然后现在有一个问题就是比较, 对于这个字符串来说, 我们hash之后比较字符串的大小, 先二分hash值,找到第一个能使得这段hash值不相同的地方,然后再比较这个位置的信息就好了。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 2e5 + 100;
    ULL base = 131;
    char s[N];
    ULL Hash[N], Hash_val[N];
    int n, m, k;
    void init(){
        Hash[0] = 1;
        for(int i = 1; i < N; ++i)
            Hash[i] = Hash[i-1] * base;
        for(int i = 1; i <= 2*n; ++i)
            Hash_val[i] = Hash_val[i-1] * base + s[i] - '0';
    }
    ULL Get_Hash(int l, int r){
        return Hash_val[r] - Hash_val[l-1] * Hash[r-l+1];
    }
    int A[N];
    bool cmp(int L1, int L2){
        int l = 1, r = m;
        while(l <= r){
            int mid = l+r >> 1;
            if(Get_Hash(L1, L1+mid-1) == Get_Hash(L2, L2+mid-1)) l = mid + 1;
            else r = mid - 1;
        }
        if(l > m) return false;
        return s[L1+l-1] < s[L2+l-1];
    }
    bool cmp2(int i, int j){
        return cmp(i, j);
    }
    bool check(int x){
    
        for(int i = 1; i <= m; ++i){
            int b = i;
            for(int j = 1; j <= k; ++j){
                if(cmp(x,b) == false) b = b + m;
                else b = b + m - 1;
            }
            if(b-i >= n) return true;
        }
        return false;
    }
    int main(){
        freopen("B.in","r",stdin);
        scanf("%d%d", &n, &k);
        m = (n+k-1)/k;
        scanf("%s", s+1);
        for(int i = n+1; i <= n*2; ++i) s[i] = s[i-n];
        s[2*n+1] = '';
        init();
        for(int i = 1; i <= n; i++)
            A[i] = i;
        sort(A+1, A+1+n, cmp2);
        int l = 1, r = n;
        while(l <= r){
            int mid = l+r >> 1;
            if(check(A[mid]) == false) l = mid + 1;
            else r = mid - 1;
        }
        for(int i = A[l]; i <= A[l]+m-1; ++i)
            printf("%c", s[i]);
        return 0;
    }
    View Code

    C: UFO

    题意: 现在有n×m的一个矩形,每个格子内都会有若干个正方体。 现在射k次激光,每次激光输入为 ( c x h)  c 是 方向 x是第几行/列, 然后射掉r个正方体, 射完之后正方体会掉下来, 现在问你射完k次激光之后,矩形内选出一个p*p的正方形, 这里面的最大的值是多少。

    题解:

    建立n+m棵线段树, 每次修改的时候 找到 [L,R]的这个区间内部中 >= h的的最左或者最右格子的位置是在哪里, 然后在2棵对应的树上修改对应的位置。

    然后再进行下一次查询,从新的[L,R]区间中重新找。

    然后再把矩形还原回来,再找到最大子矩形。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 1e6 + 100;
    int n, m, r, k, P;
    vector<int> vc[N];
    vector<int> xtree[N];
    vector<int> ytree[N];
    vector<int> *p;
    int op, g;
    void build(int l, int r, int rt){
        if(l == r){
            if(op) (*p)[rt] = vc[g][l];
            else (*p)[rt] = vc[l][g];
            return ;
        }
        int m = l+r >> 1;
        build(lson); build(rson);
        (*p)[rt] = max((*p)[rt<<1], (*p)[rt<<1|1]);
    }
    int Lpos;
    void FindL(int L, int l, int r, int rt, int h){
        if((*p)[rt] < h) return ;
        if(l == r) {
            Lpos = min(Lpos, l);
            return ;
        }
        int m = l+r >> 1;
        if(L <= l){
            if((*p)[rt<<1] >= h) FindL(L,lson,h);
            else FindL(L,rson,h);
        }
        else if(L > m) FindL(L,rson,h);
        else if(L <= m){
            if((*p)[rt<<1] >= h) FindL(L,lson,h);
            if((*p)[rt<<1|1] >= h) FindL(L,rson,h);
        }
    }
    int Rpos;
    void FindR(int R, int l, int r, int rt, int h){
        if((*p)[rt] < h) return ;
        if(l == r){
            Rpos = max(Rpos, r);
            return ;
        }
        int m = l+r >> 1;
        if(R >= r){
            if((*p)[rt<<1|1] >= h) FindR(R,rson,h);
            else FindR(R,lson,h);
        }
        else if(R <= m) FindR(R,lson,h);
        else if(R > m){
            if((*p)[rt<<1|1] >= h) FindR(R,rson,h);
            if((*p)[rt<<1] >= h) FindR(R,lson,h);
        }
    }
    void Change(int L, int l, int r, int rt){
        if(l == r){
            (*p)[rt]--;
            return ;
        }
        int m = l+r >> 1;
        if(L <= m) Change(L,lson);
        else Change(L,rson);
        (*p)[rt] = max((*p)[rt<<1], (*p)[rt<<1|1]);
    }
    void boom(int l, int r, int rt){
        if(l == r){
            vc[g][l] = (*p)[rt];
            return ;
        }
        int m = l+r >> 1;
        boom(lson); boom(rson);
    }
    int main(){
        freopen("C.in","r",stdin);
        scanf("%d%d%d%d%d", &n, &m, &r, &k, &P);
        for(int i = 0; i <= n; ++i){
            vc[i].resize(m+10);
            xtree[i].resize((m+10)<<2);
        }
        for(int i = 1; i <= m; ++i)
            ytree[i].resize((n+10)<<2);
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= m; ++j){
                scanf("%d", &vc[i][j]);
            }
        op = 1;
        for(int i = 1; i <= n; ++i){
            p = &xtree[i];
            g = i;
            build(1,m,1);
        }
    
        op = 0;
        for(int i = 1; i <= m; ++i){
            p = &ytree[i];
            g = i;
            build(1,n,1);
        }
        char op[3];
        int x, h;
        while(k--){
            scanf("%s", op);
            scanf("%d%d", &x, &h);
            if(op[0] == 'N') {
                int lst = 1;
                for(int i = 1; i <= r; i++){
                    Lpos = inf;
                    p = &ytree[x];
                    FindL(lst, 1, n, 1, h);
                    if(Lpos == inf) break;
                    Change(Lpos, 1, n, 1);
                    p = &xtree[Lpos];
                    Change(x, 1, m, 1);
                    lst = Lpos + 1;
                    if(lst > n) break;
                }
            }
            else if(op[0] == 'W'){
                int lst = 1;
                for(int i = 1; i <= r; i++){
                    Lpos = inf;
                    p = &xtree[x];
                    FindL(lst, 1, m, 1, h);
                    if(Lpos == inf) break;
                    Change(Lpos, 1, m, 1);
                    p = &ytree[Lpos];
                    Change(x, 1, n, 1);
                    lst = Lpos + 1;
                    if(lst > m) break;
                }
            }
            else if(op[0] == 'E'){
                int lst = m;
                for(int i = 1; i <= r; i++){
                    Rpos = 0;
                    p = &xtree[x];
                    FindR(lst, 1, m, 1, h);
                    if(Rpos == 0) break;
                    Change(Rpos, 1, m, 1);
                    p = &ytree[Rpos];
                    Change(x, 1, n, 1);
                    lst = Rpos - 1;
                    if(lst < 1) break;
                }
            }
            else if(op[0] == 'S'){
                int lst = n;
                for(int i = 1; i <= r; i++){
                    Rpos = 0;
                    p = &ytree[x];
                    FindR(lst, 1, n, 1, h);
                    if(Rpos == 0) break;
                    Change(Rpos, 1, n, 1);
                    p = &xtree[Rpos];
                    Change(x, 1, m, 1);
                    lst = Rpos - 1;
                    if(lst < 1) break;
                }
            }
        }
        for(int i = 1; i <= n; ++i){
            p = &xtree[i];
            g = i;
            boom(1,m,1);
        }
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= m; ++j){
                vc[i][j] += vc[i][j-1];
                if(vc[i][j] >= mod) vc[i][j] -= mod;
            }
        int ans = 0;
        for(int j = 1; j <= m; ++j)
            for(int i = 1; i <= n; ++i){
                vc[i][j] += vc[i-1][j];
                if(vc[i][j] >= mod) vc[i][j] -= mod;
                if(i >= P && j >= P){
                    int tmp = vc[i][j];
                    tmp -= vc[i-P][j];
                    tmp -= vc[i][j-P];
                    tmp += vc[i-P][j-P];
                    while(tmp < 0) tmp += mod;
                    while(tmp >= mod) tmp -= mod;
                    ans = max(tmp, ans);
                }
            }
        printf("%d
    ", ans);
        return 0;
    }
    /*
    
    4 8 2 6 2
    1 1 1 1 1 1 1 1
    1 2 3 1 1 1 3 1
    1 2 1 1 3 1 1 1
    1 1 1 1 1 1 1 2
    N 2 2
    W 2 2
    W 2 3
    E 2 1
    S 4 1
    S 7 1
    */
    View Code

    D:Frame

    题意:现在有若干个 1 × k 的长方形条, 现在问能不能刚好对 n × m 的矩形的最外面一圈填满。

    题解:check一下左上角的格子是竖着填还是横着填的就好了。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("d.in","r",stdin);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 1e5 + 100;
    int n, m, x;
    bool check1(int x){
        int mm = m - 1;
        mm %= x;
        if(mm > 1) return false;
        int nn = n % x;
        if(nn > 1) return false;
        int mmm;
        if(nn == 1) mmm = m;
        else mmm = m - 1;
        mmm %= x;
        if(mmm > 1) return false;
        int nnn = n - 2 + mm + mmm;
        nnn %= x;
        if(nnn) return false;
        return true;
    }
    bool check2(int x){
        int mm = m;
        mm %= x;
        if(mm > 1) return false;
        int nn = n - 1;
        nn %= x;
        if(nn > 1) return false;
        int mmm = m - 1 + nn;
        mmm %= x;
        if(mmm > 1) return false;
        int nnn = n - 2 + mm + mmm;
        nnn %= x;
        if(nnn) return false;
        return true;
    
    }
    int main(){
        int T;
        Fopen;
        scanf("%d%d", &n, &m);
        scanf("%d", &T);
        while(T--){
            scanf("%d", &x);
            if(check1(x) || check2(x)) {
                puts("YES");
            }
            else puts("NO");
        }
        return 0;
    }
    View Code

    E:Points

    题意:现在2维平面上有若干个点,现在要求找到一个多边形,使得长度最小,并且所有的点都在矩形的内部,不包括边上。 多边形的边只能是格子的对角线或者是沿着格子的边。

    题解:先找到一个最小矩形,能把所有点都包括在内部的矩形。 然后再从4个角考虑, 往里缩。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("E.in","r",stdin);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 1e5 + 100;
    pll p[N];
    int main(){
        Fopen;
        int n;
        int x1, y1, x2, y2;
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) {
            scanf("%d%d", &p[i].fi, &p[i].se);
            if(i == 1) x1 = x2 = p[i].fi, y2 = y1 = p[i].se;
            x1 = min(p[i].fi, x1); y1 = min(p[i].se, y1);
            x2 = max(p[i].fi, x2); y2 = max(p[i].se, y2);
        }
        x1--, y1--, x2++, y2++;
        LL ans = 2ll*(x2-x1 + y2-y1);
        LL cnt = 0;
        int maxx = x1, xx;
        for(int i = 1; i <= n; ++i){
            xx = p[i].fi - (p[i].se - y1);
            maxx = max(maxx, xx);
        }
        maxx++;
        ans -= (x2-maxx) * 2;
        cnt += x2-maxx;
        int minx = x2;
        for(int i = 1; i <= n; ++i){
            xx = p[i].fi + (p[i].se - y1);
            minx = min(minx, xx);
        }
        minx--;
        ans -= (minx-x1) * 2;
        cnt += minx-x1;
        maxx = x1;
        for(int i = 1; i <= n; ++i){
            xx = p[i].fi - (y2 - p[i].se);
            maxx = max(maxx, xx);
        }
        maxx++;
        ans -= (x2 - maxx) * 2;
        cnt += x2 - maxx;
        minx = x2;
        for(int i = 1; i <= n; ++i){
            xx = p[i].fi + (y2 - p[i].se);
            minx = min(minx, xx);
        }
        minx--;
        ans -= (minx - x1) * 2;
        cnt += minx - x1;
        //cout << cnt << endl;
    
        double tt = sqrt(2) * cnt + ans;
        printf("%f", tt);
        return 0;
    }
    View Code

    F:Most Influential Pumpkin

    题意:现在有一个长度为n的数组,现在有k次操作,给[l, r]这个区间里面的所有数+1, 现在问你每次操作之后的中位数大小是多少。

    题解:

    暴力分块。 修改的时候就对散的块暴力重构,整个块就打个lz标记。 

    对于查询来说,我们最容易想到的就是2分套2分,然后找到答案。

    但是这个复杂度实在太大,最终会T。

    可以发现他每次只会对区间里面的数执行+操作,并且是+1。

    所以我们可以发现每次中位数要么是上次修改之后的值,要么是比上次修改的值刚好大1。

    这样我们最后每次操作的复杂度就是 (√n + √nlg√n + √nlg√n) 这样的复杂度就说的过去了。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("F.in","r",stdin);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 6e4 + 100;
    int n, m, blo, num;
    int a[N], b[N];
    int l[N], r[N], lz[N];
    void update(int x){
        for(int i = l[x]; i <= r[x]; ++i)
            b[i] = a[i];
        sort(b+l[x], b+r[x]+1);
    }
    void build(){
        blo = sqrt(n) + 1;
        num = n / blo;
        if(n%blo) num++;
        for(int i = 1; i <= num; i++){
            l[i] = blo * (i-1) + 1;
            r[i] = blo * i;
            lz[i] = 0;
        }
        r[num] = n;
        for(int i = 1; i <= num; i++)
            update(i);
    }
    void Add(int ll, int rr){
        int b1 = (ll + blo -1)/ blo;
        int b2 = (rr + blo -1)/ blo;
        for(int i = b1+1; i < b2; ++i)
            ++lz[i];
        if(b1 != b2){
            for(int i = ll; i <= r[b1]; ++i) ++a[i];
            update(b1);
            for(int i = l[b2]; i <= rr; ++i) ++a[i];
            update(b2);
        }
        else {
            for(int i = ll; i <= rr; ++i) ++a[i];
            update(b1);
        }
    }
    int boom(int x){
        int ret = 0;
        for(int i = 1; i <= num; ++i){
            int tmp = x - lz[i];
            int pos = upper_bound(b+l[i], b+r[i]+1, tmp) - b - l[i];
            ret += pos;
        }
        return ret;
    }
    int need = 0;
    int mid;
    int c[N];
    int main(){
        Fopen;
        while(~scanf("%d%d", &n, &m) && n+m){
            need = n / 2 + 1;
            for(int i = 1; i <= n; ++i){
                scanf("%d", &a[i]);
                c[i] = a[i];
            }
            sort(c+1, c+1+n);
            mid = c[need];
            build();
            for(int i = 1,ll,rr; i <= m; ++i){
                scanf("%d%d",&ll,&rr);
                Add(ll,rr);
                if(boom(mid) < need) mid++;
                printf("%d
    ", mid);
            }
        }
        return 0;
    }
    View Code

    H:Triples

    题解:

    我们明白 a^j + b^j = c^j 当 a,b,c > 0 && j > 2上是无解的。

    对于j==2的时候我们暴力求解。

    然后对于j>3的时候 我们明白只有 a = 0, b = c 这种才合法,直接计算就好了。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("H.in","r",stdin);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 1e5 + 100;
    int main(){
        int ans = 0;
        int n, m;
        Fopen;
        scanf("%d%d", &m, &n);
        //n = n*n*n;
        for(int i = 0; i <= m; ++i)
            for(int j = i; j <= m; ++j)
                for(int k = j; k <= m; ++k){
                    if(i*i+j*j == k*k) ans++;
                }
        //int cnt = 0;
    
        ans += (m+1) * (n-2);
        printf("%d
    ", ans);
        return 0;
    }
    View Code

    J:Strange Antennas

    题意:求被辐射的点。

    题解:维护每行来说点的变数, 就是维护出对于每个位置来说,哪一列会对他产生影响,哪一列会消除影响。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
    #define LL long long
    #define ULL unsigned LL
    #define fi first
    #define se second
    #define pb push_back
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define lch(x) tr[x].son[0]
    #define rch(x) tr[x].son[1]
    #define max3(a,b,c) max(a,max(b,c))
    #define min3(a,b,c) min(a,min(b,c))
    typedef pair<int,int> pll;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const LL mod =  (int)1e9+7;
    const int N = 3e4 + 100;
    vector<int> vc[N];
    int n, m;
    int vis[N];
    inline bool check(int x, int y){
        if(x < 1 || y < 1 || x > n || y > n) return false;
        return true;
    }
    int main(){
        freopen("J.in","r",stdin);
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= m; ++i){
            int x, y, r, op;
            scanf("%d%d%d%d", &x, &y, &r, &op);
            if(op == 1){
                for(int i = 0; i < r; ++i){
                    if(check(x+1,y+1+i)){
                        vc[x+1].pb(y+1+i);
                    }
                }
                x = x + 2; y = y + r;
                while(r--){
                    if(check(x,y)) vc[x].pb(y);
                    ++x; --y;
                }
            }
            else if(op == 0){
                ++x;
                for(int i = 0; i < r; ++i){
                    if(check(x,y-i)) vc[x].pb(y-i);
                }
                x++,  y = y - r + 1;
                while(r--){
                    if(check(x,y)) vc[x].pb(y);
                    ++x;++y;
                }
            }
            else if(op == 2){
                ++y;
                for(int i = 0; i < r; ++i)
                    if(check(x+1,y+i)) vc[x+1].pb(y+i);
                x = x - r + 1;
                while(r--){
                    if(check(x,y)) vc[x].pb(y);
                    else if(check(1,y)) vc[1].pb(y);
                    ++x;++y;
                }
            }
            else if(op == 3){
                for(int i = 0; i < r; ++i)
                    if(check(x+1,y-i)) vc[x+1].pb(y-i);
                x = x - r + 1;
                while(r--){
                    if(check(x,y)) vc[x].pb(y);
                    else if(check(1,y)) vc[1].pb(y);
                    x++, y--;
                }
            }
        }
        int ans = 0;
        int cnt = 0;
        for(int i = 1; i <= n; i++){
            for(auto y : vc[i]){
                vis[y] ^= 1;
                if(vis[y]) cnt++;
                else cnt--;
            }
            ans += cnt;
        }
        printf("%d
    ", ans);
        return 0;
    }
    View Code
  • 相关阅读:
    集算器如何优化SQL计算(2)分组
    集算器如何优化SQL计算(1)动态列
    android DOM解析Xml
    ASP.NET 抓取网页内容
    抓取HTML网页数据
    [转]Android的网络与通信
    Android的三种网络通信方式
    Android通过onDraw实现在View中绘图操作
    Android Canvas类介绍
    DatabaseMetaData的用法(转)
  • 原文地址:https://www.cnblogs.com/MingSD/p/9945484.html
Copyright © 2020-2023  润新知