• 利用奇异值分解(SVD)进行图像压缩-python实现


    首先要声明,图片的算法有很多,如JPEG算法SVD对图片的压缩可能并不是最佳选择,这里主要说明SVD可以降维

    相对于PAC(主成分分析),SVD(奇异值分解)对数据的列和行都进行了降维,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。

    一张二维n*m的灰度图片可以看做是n*m的矩阵,利用SVD可以实现对二维图像的压缩

    1、按照灰度图片进行压缩:

    #-*- coding: utf-8 -*
    import numpy as np
    from PIL import Image
    
    def svd_restore(sigma, u, v, K):
        K = min(len(sigma)-1, K)            #当K超过sigma的长度时会造成越界
        print 'Now restore the image with %d ranks' % K
        m = len(u)
        n = v[0].size
        SigRecon = np.zeros((m, n))         #新建一int矩阵,储存恢复的灰度图像素
        for k in range(K+1):                #计算X=u*sigma*v
            for i in range(m):
                SigRecon[i] += sigma[k] * u[i][k] * v[k]
        SigRecon = SigRecon.astype('uint8') #计算得到的矩阵还是float型,需要将其转化为uint8以转为图片
        Image.fromarray(SigRecon).save("svd_" + str(K) + "_" +image_file) #保存灰度图
        
    image_file = u'1.jpg'
    if __name__ == '__main__':
        im = Image.open(image_file)    #打开图像文件
        im = im.convert('L')           #将原图像转化为灰度图
        im.save("Gray_" + image_file)  #保存灰度图
        w, h = im.size                 #得到原图的长与宽
        dt = np.zeros((w, h), 'uint8') #新建一int矩阵,储存灰度图各像素点数据
        for i in range(w):             #逐像素点复制,由于直接对im.getdata()进行数据类型转换会有偏差
            for j in range(h):
                dt[i][j] = im.getpixel((i, j))
        dt = dt.transpose()            #复制过来的图像是原图的翻转,因此将其再次翻转到正常角度
        u, sigma, v = np.linalg.svd(dt)#调用numpy库进行SVM
        u = np.array(u)                #转为array格式,方便进行乘法运算
        v = np.array(v)                #同上
        for k in [1, 10, 20, 30, 50, 80, 100, 150, 200, 300, 500]:
            svd_restore(sigma, u, v, k)#使用前k个奇异值进行恢复
    
    奇异值分别取1, 10, 20, 30, 50, 80, 100, 150, 200, 300, 500的降维压缩效果(原始图片为1.jpg)


    2、按照彩色图片进行压缩

    #-*- coding: utf-8 -*
    from PIL import Image 
    import numpy as np 
    def rebuild_img(u, sigma, v, p):#p表示奇异值的百分比 
        #print p 
        m = len(u) 
        n = len(v) 
        a = np.zeros((m, n)) 
    
        count = (int)(sum(sigma)) 
        curSum = 0 
        k = 0 
        print sigma[0:2],count* p
        while curSum <= count * p:
            uk = u[:, k].reshape(m, 1)
            vk = v[k].reshape(1, n) 
            #print curSum,count,'--------',k
            a += sigma[k] * np.dot(uk, vk)
            curSum += sigma[k] 
            k += 1
            #print k
        
        print 'k:',k 
        a[a < 0] = 0 
        a[a > 255] = 255
         #按照最近距离取整数,并设置参数类型为uint8 
        return np.rint(a).astype("uint8") 
    if __name__ == '__main__':
        img = Image.open(u'招商.jpg', 'r')
        a = np.array(img)
        #print a[:, :, 0]
        # u, sigma, v = np.linalg.svd(a[:, :, 0])
        # R = rebuild_img(u, sigma, v, 0.9)
    
        for p in np.arange(0.1, 1, 0.1):
            u, sigma, v = np.linalg.svd(a[:, :, 0])
            R = rebuild_img(u, sigma, v, p)
            u, sigma, v = np.linalg.svd(a[:, :, 1])
            G = rebuild_img(u, sigma, v, p)
            u, sigma, v = np.linalg.svd(a[:, :, 2])
            B = rebuild_img(u, sigma, v, p)
            I = np.stack((R, G, B), 2)
            #保存图片在img文件夹下
            Image.fromarray(I).save("aq\svd_" + str(int(p * 100)) + ".jpg")
    RGB三个通道信息量均按照按照0.1-0.9压缩的图片对比:

    2、matplotlib展示压缩前后对比(灰度

    #-*- coding: utf-8 -*
    import numpy as np
    from scipy import ndimage
    import matplotlib.pyplot as plt
    def pic_compress(k, pic_array):
        u, sigma, vt = np.linalg.svd(pic_array)
        sig = np.eye(k) * sigma[: k]
        new_pic = np.dot(np.dot(u[:, :k], sig), vt[:k, :])  # 还原图像
        size = u.shape[0] * k + sig.shape[0] * sig.shape[1] + k * vt.shape[1]  # 压缩后大小
        return new_pic, size
    
    filename = u"招商.jpg" 
    ori_img = np.array(ndimage.imread(filename, flatten=True)) 
    new_img, size = pic_compress(100, ori_img) 
    print("original size:" + str(ori_img.shape[0] * ori_img.shape[1])) 
    print("compress size:" + str(size)) 
    fig, ax = plt.subplots(1, 2) 
    ax[0].imshow(ori_img) 
    ax[0].set_title("before compress") 
    ax[1].imshow(new_img) 
    ax[1].set_title("after compress") 
    plt.show()

    运行效果:

    参考文献:

    https://my.oschina.net/bgbfbsdchenzheng/blog/687110

    https://blog.csdn.net/xuelabizp/article/details/52318708

    https://blog.csdn.net/wang454592297/article/details/80999644

  • 相关阅读:
    img标签中alt属性与title属性在seo的作用-摘自网友
    C# 从补码中获取有符号数的实际数值
    you need to load the kernel first
    桌面远程访问
    供应商通过向日葵访问公司外网办公电脑,通过办公电脑访问内网内生产用电脑
    配置交换机口可以上外网
    抠图和不失真的改变图形大小
    用机房现有双网口电脑添加监控
    服务器配置IP
    在DELL服务器上安装windows2012 r2服务器系统
  • 原文地址:https://www.cnblogs.com/Micang/p/10158486.html
Copyright © 2020-2023  润新知