• 最长上升子序列(LIS)与最长公共子序列(LCS)


    1.LIS :

    给定一个序列,求它的最长上升子序列(n<=2000)

    第一种 O(n^2):
    dp[i] 为以i为开头的最长上升子序列长度
    code1:

    #include<cstdio>
    #include<iostream>
    using namespace std;
    
    int n,ans;
    int a[2005],dp[2005];
    
    int main(){
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i]);
            dp[i]=1;
        }
        for(int i=1;i<=n;i++) {
            for(int j=1;j<i;j++)
                if(a[j]<a[i]) dp[i]=max(dp[j]+1,dp[i]);
            if(ans<dp[i]) ans=dp[i];
        }
        printf("%d",ans);
        return 0;
    }

    第二种 O(nlogn):
    最长上升子序列存在O(N log N)时间复杂度的算法,概述如下:

    考虑两个数a[x]和a[y],若x < y且g[x]==g[y],那么在转移的过程中,选择a[x]更有潜力(证明是显而易见的,可以自己设计几组数据加深理解),可以获得最优的值,所以当g数组的值一样时,应选择最小的数。

    按照g[i]==k分类,记录g[i]==k的所有i的最小值,g有两个特点:

    1)f[i]在计算过程中单调不升

    2)f数组是有序的,g[i]<=g[i+1]

    根据这些性质,可以方便地求解:

    1)设当前求出的LIS长度为ans(初始值为1),当前元素为a[x]

    2)如果a[x]>g[ans],直接加入f数组的末尾,且ans++;否则在f数组中二分查找,找到第一个比a[x]小的数字g[k](使用二分查找实现),g[k+1]=a[x],这样做保证a[x] < =g[k+1](根据性质1,2)

    3)最后的ans即为答案
    代码中dp[i] 表示长度为i的上升子序列末尾元素最小是多少
    code2:

    #include<cstdio>
    
    int n,ans;
    int a[2005],dp[2005];
    
    int find(int l,int r,int x){//二分查找 用循环也行这里递归
        int mid=(l+r)/2;
        if(l==mid) return l<x?r:l;//如果前一个满足选前一个不然选第二个
        if(dp[mid]<x) return find(mid,r,x);
        else return find(l,mid,x);
    }
    
    int main(){
        scanf("%d",&n);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        dp[++top]=a[1];
        for(int i=2;i<=n;i++) {//若a[i]==dp[ans] 跳过 
            if(a[i]>dp[ans]) dp[++ans]=a[i];//如果恰好可以接上
            else if(a[i]<dp[ans]) dp[find(1,ans,a[i])]=a[i];//找到第一个不小于的换掉(手动跑下就明白了)
        }
        printf("%d",ans);
        return 0;
    }

    2.LCS

    给定两个长度分别为n,m的序列S,T求他们的最长公共子序列

    设 dp[x][y] 表示S[1..x]与T[1..y]的最长公共子序列的长度
    分三种情况:
    1.S[x]不在公共子序列中:该情况下dp[x][y]=dp[x-1][y];
    2.T[x]不在公共子序列中:该情况下dp[x][y]=dp[x][y-1];
    3.当S[x]=T[y]时,S[x]和T[y] 均在公共子序列中:该情况下dp[x][y]=dp[x-1][y-1]+1;
    最终dp[x][y] 取以上情况的最大值。
    边界 若x=0或y=0 dp[x][y] =0。
    复杂度:O(n^2)
    code:

    #include<cstdio>
    
    int n,m;
    int s[2][5000],dp[5000][5000];
    
    int max(int x,int y,int z){
        x=x>y?x:y;
        x=x>z?x:z;
        return x;
    }
    
    int main(){
        scanf("%d",&n);
        for(int i=0;i<=1;i++)
            for(int j=1;j<=n;j++) 
                scanf("%d",&s[i][j]);
    
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++) {
                if(s[0][i]==s[1][j]) dp[i][j]=dp[i-1][j-1]+1;
                dp[i][j]=max(dp[i][j],dp[i-1][j],dp[i][j-1]);
            }
    
        printf("%d",dp[n][n]);
        return 0;
    }
    版权声明:本文为博主原创文章,未经博主允许不得转载。 博主:https://www.cnblogs.com/Menteur-Hxy/
  • 相关阅读:
    Rock Pi开发笔记(二):入手Rock Pi 4B plus(基于瑞星微RK3399)板子并制作系统运行
    麒麟系统开发笔记(一):国产麒麟系统搭建开发环境之虚拟机安装
    linux实用技巧:在虚拟机vmware16软件上安装CentOs8.2虚拟机,重置可用源和安装输入法
    CentOS8安装Geant4笔记(三):Geant4介绍、编译、安装支持Qt5界面并运行exampleB1例程显示Qt界面
    CentOS8安装Geant4笔记(二):CentOS8安装Qt5.15.2并测试运行环境
    【图片+代码】:GCC 链接过程中的【重定位】过程分析
    嵌入式软件开发书籍推荐
    Commit Message 规范
    Android 12 适配指南——SplashScreen
    Android12 新特性及适配指南
  • 原文地址:https://www.cnblogs.com/Menteur-Hxy/p/9248047.html
Copyright © 2020-2023  润新知