题目大意:有$n(nleqslant5 imes10^5)$个数,有$m(mleqslant5 imes10^5)$次询问。
一次询问形如$l;r;s;k;w_1;w_2dots w_k:$每次询问$[l_i,r_i]$内的出现次数大于一半的数,如果没有,则为$s$。这次询问后结束后$k(sum kleqslant10^6)$个位置的数$w_i$变成询问答案。
题解:求大于一半的数可以用[洛谷P2397]yyy loves Maths VI (mode)来做,带修改,可以用线段树,维护区间最大的数,以及这个数比一半多了多少。但是求出来的答案只是可能的解(因为没有出现次数保证大于一半),可以用平衡树求出这个数在这个区间中出现次数,判断是否合法。修改暴力改
卡点:初值计数器赋成$-1$,导致转移出锅
C++ Code:
#include <cstdio> #include <cctype> //#define ONLINE_JUDGE namespace R { int x; #ifdef ONLINE_JUDGE #define M 1 << 27 char op[M], *ch; inline void init() {fread(ch = op, 1, M, stdin);} inline int read() { while (isspace(*ch)) ch++; for (x = *ch & 15, ch++; isdigit(*ch); ch++) x = x * 10 + (*ch & 15); return x; } #else char ch; inline int read() { ch = getchar(); while (isspace(ch)) ch = getchar(); for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15); return x; } #endif } using R::read; #define maxn 500010 int n, m; int s[maxn]; namespace SgT { struct node { int s, cnt; //s为区间可能众数,cnt这个数比一半区间长度多多少 inline node(int __s = 0, int __cnt = 0) {s = __s, cnt = __cnt;} inline friend node operator + (const node &lhs, const node &rhs) { if (lhs.s == rhs.s) return node(lhs.s, lhs.cnt + rhs.cnt); if (lhs.cnt > rhs.cnt) return node(lhs.s, lhs.cnt - rhs.cnt); else return node(rhs.s, rhs.cnt - lhs.cnt); } } V[maxn << 2]; inline void update(int rt) { V[rt] = V[rt << 1] + V[rt << 1 | 1]; } void build(int rt, int l, int r) { if (l == r) { V[rt] = node(s[l], 1); return ; } int mid = l + r >> 1; build(rt << 1, l, mid); build(rt << 1 | 1, mid + 1, r); update(rt); } int pos, num; void __modify(int rt, int l, int r) { if (l == r) { V[rt] = node(num, 1); return ; } int mid = l + r >> 1; if (pos <= mid) __modify(rt << 1, l, mid); else __modify(rt << 1 | 1, mid + 1, r); update(rt); } void modify(int __pos, int __num) { pos = __pos, num = __num; __modify(1, 1, n); } int L, R; node __query(int rt, int l, int r) { if (L <= l && R >= r) return V[rt]; int mid = l + r >> 1; node ans; if (L <= mid) ans = __query(rt << 1, l, mid); if (R > mid) ans = ans + __query(rt << 1 | 1, mid + 1, r); return ans; } int query(int __L, int __R, int tg = 0) { L = __L, R = __R; return __query(1, 1, n).s; } } namespace Treap { int root[maxn]; #define N 1000010 + maxn int seed = 20040826; inline int rand() {return seed *= 48271;} int ta, tb, tmp, res; int lc[N], rc[N], pri[N], V[N], sz[N], idx; inline int nw(int x) { pri[++idx] = rand(); sz[idx] = 1; V[idx] = x; return idx; } inline int update(int rt) { sz[rt] = sz[lc[rt]] + sz[rc[rt]] + 1; return rt; } void split(int rt, int k, int &x, int &y) { if (!rt) x = y = 0; else { if (V[rt] <= k) split(rc[rt], k, rc[rt], y), x = update(rt); else split(lc[rt], k, x, lc[rt]), y = update(rt); } } int merge(int x, int y) { if (!x || !y) return x | y; if (pri[x] > pri[y]) {rc[x] = merge(rc[x], y); return update(x);} else {lc[y] = merge(x, lc[y]); return update(y);} } void insert(int &rt, int x) { if (!rt) rt = nw(x); else { split(rt, x, ta, tb); rt = merge(merge(ta, nw(x)), tb); } } void erase(int &rt, int x) { split(rt, x, ta, tb); split(ta, x - 1, ta, tmp); rt = merge(ta, tb); } int gtrnk(int &rt, int x) { split(rt, x, ta, tb); res = sz[ta]; merge(ta, tb); return res; } int query(int &rt, int l, int r) { // printf("%d %d ", gtrnk(rt, r), gtrnk(rt, l)); return gtrnk(rt, r) - gtrnk(rt, l - 1); } void modify(int tg, int &before, int after) { erase(root[before], tg); insert(root[after], tg); before = after; } #undef N } using Treap::root; int main() { #ifdef ONLINE_JUDGE R::init(); #endif n = read(), m = read(); for (int i = 1; i <= n; i++) Treap::insert(root[s[i] = read()], i); SgT::build(1, 1, n); while (m --> 0) { int l = read(), r = read(), s = read(), k = read(); int tmp = SgT::query(l, r); int CNT = Treap::query(root[tmp], l, r); if (CNT <= (r - l + 1 >> 1)) tmp = s; printf("%d ", tmp); for (int i = 0, x; i < k; i++) { x = read(); SgT::modify(x, tmp); Treap::modify(x, ::s[x], tmp); } } int tmp = SgT::query(1, n); int CNT = Treap::query(root[tmp], 1, n); if (CNT <= n >> 1) tmp = -1; printf("%d ", tmp); return 0; }