• [洛谷P4389]付公主的背包


    题目大意:有$n(nleqslant10^5)$种物品,第$i$个物品体积为$v_i$,都有$10^5$件。给定$m(mleqslant10^5)$,对于$sin [1,m]$,请你回答用这些商品恰好装$s$体积的方案数

    题解:(by Weng_weijie)

    背包问题模板(误)

    对每个物品构造生成函数$F(x)=displaystylesum_{i=0}^{infty}x^{vi}=dfrac{1}{1-x^v}$

    然后所有相乘就得到答案(不会乘)

    对每个多项式求$ln$加起来再求$exp$,但是一个个求也不行(复杂度$O(nm)$),可以记录一下每个$v_i$的出现次数,一次性加起来,这样处理出原式子的复杂度是$O(mlog_2m)$

    于是:

    $$
    egin{align*}
    ln F(x)&=int frac{F'(x)}{F(x)} dx \\
    &=int sum_{i=1}^{infty}vix^{vi-1}(1-x^v) dx \\
    &=int sum_{i=1}^{infty}vx^{vi-1} dx\\
    &=sum_{i=1}^{infty}frac{1}{i}x^{vi}
    end{align*}
    $$

    然后加起来求$exp$

    卡点:数组开小

    C++ Code:

    #include <cstdio>
    #include <algorithm>
    #define maxn 100010
    #define N (262144 | 3)
    const int mod = 998244353, G = 3;
    int n, m;
    int inv[N], a[N], b[N];
    int num[maxn], maxvi;
    namespace Poly {
    	inline int pw(int base, int p) {
    		int res = 1;
    		for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod;
    		return res;
    	}
    	inline int Inv(int x){return pw(x, mod - 2);}
    	int lim, ilim, s, rev[N];
    	int Wn[N];
    	inline void init(int n) {
    		lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = inv[lim];
    		for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
    		int t = pw(G, (mod - 1) / lim);
    		Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * t % mod;
    	}
    	inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
    	inline void NTT(int *A, int op = 1) {
    		for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
    		for (int mid = 1; mid < lim; mid <<= 1) {
    			int t = lim / mid >> 1;
    			for (int i = 0; i < lim; i += mid << 1) {
    				for (int j = 0; j < mid; j++) {
    					int W = op ? Wn[t * j] : Wn[lim - t * j];
    					int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
    					up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
    				}
    			}
    		}
    		if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
    	}
    	inline void DER(int *A, int *B, int n) {
    		B[n - 1] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod;
    	}
    	inline void INT(int *A, int *B, int n) {
    		B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * inv[i] % mod;
    	}
    	int C[N];
    	void INV(int *A, int *B, int n) {
    		if (n == 1) {B[0] = Inv(A[0]); return ;}
    		INV(A, B, n + 1 >> 1), init(n << 1);
    		for (int i = 0; i < n; i++) C[i] = A[i];
    		for (int i = n; i < lim; i++) C[i] = B[i] = 0;
    		NTT(B), NTT(C);
    		for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod;
    		NTT(B, 0);
    		for (int i = n; i < lim; i++) B[i] = 0;
    	}
    	int D[N];
    	inline void LN(int *A, int *B, int n) {
    		DER(A, D, n), INV(A, B, n);
    		init(n << 1);
    		NTT(B), NTT(D);
    		for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod;
    		NTT(D, 0), INT(D, B, n);
    		for (int i = n; i < lim; i++) B[i] = 0;
    	}
    	int E[N], F[N];
    	void EXP(int *A, int *B, int n) {
    		if (n == 1) {B[0] = 1; return ;}
    		EXP(A, B, n + 1 >> 1);
    		for (int i = 0; i < n << 1; i++) E[i] = F[i] = 0;
    		LN(B, E, n);
    		for (int i = 0; i < n; i++) F[i] = A[i];
    		NTT(B), NTT(E), NTT(F);
    		for (int i = 0; i < lim; i++) B[i] = (1ll + mod - E[i] + F[i]) * B[i] % mod;
    		NTT(B, 0);
    		for (int i = n; i < lim; i++) B[i] = 0;
    	}
    }
    int main() {
    	scanf("%d%d", &n, &m); m++;
    	for (int i = 0, x; i < n; i++) scanf("%d", &x), num[x]++, maxvi = std::max(maxvi, x);
    	inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod;
    	for (int i = 1; i <= maxvi; i++) {
    		int tmp = num[i];
    		if (tmp) {
    			for (int j = i, x = 1; j < m; j += i, x++) a[j] = (a[j] + 1ll * tmp * inv[x]) % mod;
    		}
    	}
    	Poly::EXP(a, b, m);
    	for (int i = 1; i < m; i++) printf("%d
    ", b[i]);
    	return 0;
    }
    

      

  • 相关阅读:
    W phase 学习
    有限破裂矩张量的发展历史
    Capjoint
    JavaScript之Function类型
    ThreadLocal学习资料
    Shiro学习资料
    jstl学习资料
    分页框架pager-taglib学习笔记
    MyBatis3学习笔记(曹锋老师版)
    关于处理日期格式化问题遇到的一个坑
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/9726558.html
Copyright © 2020-2023  润新知