题目大意:求$n$个点的带标号的无向连通图的个数
题解:令$F(x)$为带标号无向连通图个数生成函数,$G(x)$为带标号无向图个数生成函数
那么$G(x) = sum_{i=0}^{infty} dfrac{2^{i(i-1)/2}}{i!} x^i$
枚举连通块个数可得$G(x)=sum_{i=0}^{infty}dfrac{F^i(x)}{i!}$
$$
f(x)=f(x_0)+dfrac{f'(x_0)(x-x_0)}{1!}+dfrac{f''(x_0)(x-x_0)^2}{2!}+cdots+dfrac{f^{(n)}(x_0)(x-x_0)^n}{n!}\
f(x)=e^x, x_0=0\
e^x=sumlimits_{i=0}^{infty}dfrac{x^i}{i!}
$$
由泰勒展开得$G(x)=e^{F(x)}$
所以$F(x) = ln G(x)$
$$
F(x)=ln G(x)\
F'(x)=dfrac{G'(x)}{G(x)}\
F(x)=intdfrac{G'(x)}{G(x)}mathrm{dx}
$$
答案是$[x^n]F(x) imes n!$
卡点:无
C++ Code:
#include <cstdio> #include <algorithm> #define maxn 262144 + 10 const int mod = 1004535809, G = 3; int n; int g[maxn], f[maxn], fac[maxn], inv[maxn]; inline int pw(int base, long long p) { p %= mod - 1, base %= mod; int res = 1; for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod; return res; } inline int INV(int x) { return pw(x, mod - 2); } namespace Polynomial { int lim, ilim, s, rev[maxn]; int C[maxn], Wn[maxn]; inline void init(int n) { s = -1, lim = 1; while (lim < n) lim <<= 1, s++; ilim = ::INV(lim); for (int i = 1; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << s); int tmp = pw(G, (mod - 1) / lim); Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * tmp % mod; } inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;} inline void NTT(int *A, int op) { for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]); for (int mid = 1; mid < lim; mid <<= 1) { int t = lim / mid >> 1; for (int i = 0; i < lim; i += (mid << 1)) { for (int j = 0; j < mid; j++) { int W = op ? Wn[t * j] : Wn[lim - t * j]; int X = A[i + j], Y = 1ll * W * A[i + j + mid] % mod; up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y); } } } if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod; } void INV(int *A, int *B, int n) { if (n == 1) {B[0] = ::INV(A[0]); return ;} INV(A, B, n + 1 >> 1), init(n << 1); for (int i = 0; i < n; i++) C[i] = A[i]; for (int i = n; i < lim; i++) C[i] = B[i] = 0; NTT(B, 1), NTT(C, 1); for (int i = 0; i < lim; i++) B[i] = (2 + mod - 1ll * B[i] * C[i] % mod) * B[i] % mod; NTT(B, 0); for (int i = n; i < lim; i++) B[i] = 0; } inline void DER(int *A, int *B, int n) { B[n] = 0; for (int i = 1; i < n; i++) B[i - 1] = 1ll * A[i] * i % mod; } inline void INT(int *A, int *B, int n) { B[0] = 0; for (int i = 1; i < n; i++) B[i] = 1ll * A[i - 1] * ::INV(i) % mod; } int D[maxn]; inline void LN(int *A, int *B, int len) { DER(A, B, len); INV(A, D, len); init(n << 1); NTT(B, 1), NTT(D, 1); for (int i = 0; i < lim; i++) D[i] = 1ll * B[i] * D[i] % mod; NTT(D, 0); INT(D, B, len); for (int i = len; i < lim; i++) B[i] = 0; } } int main() { scanf("%d", &n); n++; fac[0] = fac[1] = inv[0] = inv[1] = 1; for (int i = 2; i < n; i++) { fac[i] = 1ll * fac[i - 1] * i % mod; inv[i] = 1ll * inv[mod % i] * (mod - mod / i) % mod; } for (int i = 2; i < n; i++) inv[i] = 1ll * inv[i - 1] * inv[i] % mod; for (int i = 0; i < n; i++) g[i] = 1ll * pw(2, 1ll * i * (i - 1) >> 1ll) * inv[i] % mod; Polynomial::LN(g, f, n); printf("%lld ", 1ll * f[n - 1] * fac[n - 1] % mod); return 0; }