题目大意:给你$n,k(nleqslant10^9,kleqslant10^6)$,求:
$$
sumlimits_{i=1}^ni^kpmod{10^9+7}
$$
题解:可以猜测是一个$k+1$次的多项式,可以求出$x$在$0,1,2,3,dots,k+1$时的值,设为$s_0,s_1,dots,s_{k+1}$,根据拉格朗日插值公式:
$$
egin{align*}
f_n&=sumlimits_{i=0}^{k+1}y_iprodlimits_{j=0,j
ot=i}^{k+1}dfrac{n-x_j}{x_i-x_j}\
&=sumlimits_{i=0}^{k+1}(-1)^{k-i+1}s_idfrac{n(n-1)cdots(n-k-1)}{(n-i)i!(k-i+1)!}\
end{align*}
$$
然后预处理出阶乘就可以了。注意,因为取了$0$这个点,若$k=0$会答案出错,可以选择特判或取$1sim k+2$几个点,还有,当$kleqslant n-1$时,式子为零,直接输出即可。
卡点:无
C++ Code:
#include <cstdio> #define maxn 1000010 const int mod = 1e9 + 7; inline int pw(int base, int p) { static int res; for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod; return res; } inline int inv(int x) {return pw(x, mod - 2);} inline void reduce(int &x) {x += x >> 31 & mod;} int n, k, ans; int fac[maxn], s[maxn], prod = 1; int main() { scanf("%d%d", &n, &k); if (k == 0) { std::printf("%d ", n); return 0; } for (int i = 0; i <= k + 1; i++) { prod = static_cast<long long> (n - i) * prod % mod; s[i] = pw(i, k); } fac[0] = 1; for (int i = 1; i <= k + 1; i++) { fac[i] = static_cast<long long> (fac[i - 1]) * i % mod; reduce(s[i] += s[i - 1] - mod); if (n == i) { std::printf("%d ", s[i]); return 0; } } for (int i = 1; i <= k + 1; i++) { reduce(ans += s[i] * static_cast<long long> (prod) % mod * inv(n - i) % mod * inv(fac[i]) % mod * inv(fac[k - i + 1]) * (k - i + 1 & 1 ? -1 : 1) % mod - mod); reduce(ans); } printf("%d ", ans); return 0; }