• [洛谷P4721]【模板】分治 FFT_求逆


    题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求:

    $$
    f_i=sum_{j=1}^if_{i-j}g_j\
    f_0=1
    $$

    题解:分治$FFT$博客,发现这道题就是求$f*g=f-1$($f-1$就是没有常数项的$f$),改写一下式子:
    $$
    f*gequiv f-1pmod{x^n}\
    f-f*gequiv1pmod{x^n}\
    f*(1-g)equiv1pmod{x^n}\
    fequiv(1-g)^{-1}pmod{x^n}
    $$


    卡点:

    C++ Code:

    #include <algorithm>
    #include <cstdio>
    #include <cctype>
    namespace std {
    	struct istream {
    #define M (1 << 21 | 3)
    		char buf[M], *ch = buf - 1;
    		inline istream() {
    #ifndef ONLINE_JUDGE
    			freopen("input.txt", "r", stdin);
    #endif
    			fread(buf, 1, M, stdin);
    		}
    		inline istream& operator >> (int &x) {
    			while (isspace(*++ch));
    			for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
    			return *this;
    		}
    #undef M
    	} cin;
    	struct ostream {
    #define M (1 << 21 | 3)
    		char buf[M], *ch = buf - 1;
    		int w;
    		inline ostream& operator << (int x) {
    			if (!x) {
    				*++ch = '0';
    				return *this;
    			}
    			for (w = 1; w <= x; w *= 10);
    			for (w /= 10; w; w /= 10) *++ch = (x / w) ^ 48, x %= w;
    			return *this;
    		}
    		inline ostream& operator << (const char x) {*++ch = x; return *this;}
    		inline ~ostream() {
    #ifndef ONLINE_JUDGE
    			freopen("output.txt", "w", stdout);
    #endif
    			fwrite(buf, 1, ch - buf + 1, stdout);
    		}
    #undef M
    	} cout;
    }
    
    const int mod = 998244353, G = 3;
    namespace Math {
    	inline int pw(int base, int p) {
    		static int res;
    		for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
    		return res;
    	}
    	inline int inv(int x) {return pw(x, mod - 2);}
    }
    
    inline void reduce(int &a) {a += a >> 31 & mod;}
    inline long long get_reducell(long long a) {return a += a >> 63 & mod;}
    namespace Poly {
    #define N (262144 | 3)
    	int lim, ilim, s, rev[N];
    	int Wn[N + 1];
    	inline void init(int n) {
    		s = -1, lim = 1; while (lim <= n) lim <<= 1, s++; ilim = Math::inv(lim);
    		for (register int i = 1; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
    		const int t = Math::pw(G, (mod - 1) / lim);
    		*Wn = 1; for (register int *i = Wn; i != Wn + lim; ++i) *(i + 1) = static_cast<long long> (*i) * t % mod;
    	}
    	inline void clear(register int *l, const int *r) {
    		if (l >= r) return ;
    		while (l != r) *l++ = 0;
    	}
    
    	inline void NTT(int *A, const int op = 1) {
    		for (register int i = 1; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
    		for (register int mid = 1; mid < lim; mid <<= 1) {
    			const int t = lim / mid >> 1;
    			for (register int i = 0; i < lim; i += mid << 1) {
    				for (register int j = 0; j < mid; j++) {
    					const int W = op ? Wn[t * j] : Wn[lim - t * j];
    					const int X = A[i + j], Y = static_cast<long long> (A[i + j + mid]) * W % mod;
    					reduce(A[i + j] += Y - mod), reduce(A[i + j + mid] = X - Y);
    				}
    			}
    		}
    		if (!op) for (register int *i = A; i != A + lim; ++i) *i = static_cast<long long> (*i) * ilim % mod;
    	}
    
    	int C[N];
    	void INV(int *A, int *B, int n) {
    		if (n == 1) {*B = Math::inv(*A); return ;}
    		INV(A, B, n + 1 >> 1);
    		init(n + n - 1);
    		std::copy(A, A + n, C); clear(C + n, C + lim);
    		NTT(B), NTT(C);
    		for (register int i = 0; i < lim; i++) B[i] = (2 - static_cast<long long> (B[i]) * C[i] % mod + mod) % mod * B[i] % mod;
    		NTT(B, 0), clear(B + n, B + lim);
    	}
    #undef N
    }
    
    #define maxn (262144 | 3)
    int n, f[maxn], g[maxn];
    
    int main() {
    	std::cin >> n;
    	*g = 1;
    	for (int i = 1; i < n; i++) {
    		std::cin >> g[i];
    		g[i] = mod - g[i];
    	}
    	Poly::INV(g, f, n);
    	for (int i = 0; i < n; i++) std::cout << f[i] << ' ';
    	std::cout << '
    ';
    	return 0;
    }
    

      

  • 相关阅读:
    C#事件由浅至深简析
    数据传递型情景下事件机制与消息机制的架构设计剖析(目录)
    数据传递型情景下事件机制与消息机制的架构设计剖析(一)
    从问题说开来……
    windows server作为文件服务器如何精细控制权限
    TortoiseGit 删除密码 清除密码 让你每次都输入账号密码提交
    adb基础常用命令总结
    python之冒泡排序
    python水仙花数
    fiddler抓取手机(iPhoneX)APP上HTTPS接口数据
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/10133416.html
Copyright © 2020-2023  润新知