今天看文档发现numpy并不推荐使用matrix类型。主要是因为array才是numpy的标准类型,并且基本上各种函数都有队array类型的处理,而matrix只是一部分支持而已。
这个转载还是先放着了,少用,少用!
from http://www.cnblogs.com/sumuncle/p/5760458.html
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。 class numpy.matrix(data,dtype,copy):返回一个矩阵,其中data为ndarray对象或者字符形式;dtype:为data的type;copy:为bool类型。
>>> a = np.matrix('1 2 7; 3 4 8; 5 6 9') >>> a #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩 matrix([[1, 2, 7], #阵的元素之间必须以空格隔开。 [3, 4, 8], [5, 6, 9]]) >>> b=np.array([[1,5],[3,2]]) >>> x=np.matrix(b) #矩阵中的data可以为数组对象。 >>> x matrix([[1, 5], [3, 2]])
矩阵对象的属性:
matrix.T transpose:返回矩阵的转置矩阵
matrix.H hermitian (conjugate) transpose:返回复数矩阵的共轭元素矩阵
matrix.I inverse:返回矩阵的逆矩阵
matrix.A base array:返回矩阵基于的数组
矩阵对象的方法:
all([axis, out]) :沿给定的轴判断矩阵所有元素是否为真(非0即为真)
any([axis, out]) :沿给定轴的方向判断矩阵元素是否为真,只要一个元素为真则为真。
argmax([axis, out]) :沿给定轴的方向返回最大元素的索引(最大元素的位置).
argmin([axis, out]): 沿给定轴的方向返回最小元素的索引(最小元素的位置)
argsort([axis, kind, order]) :返回排序后的索引矩阵
astype(dtype[, order, casting, subok, copy]):将该矩阵数据复制,且数据类型为指定的数据类型
byteswap(inplace) Swap the bytes of the array elements
choose(choices[, out, mode]) :根据给定的索引得到一个新的数据矩阵(索引从choices给定)
clip(a_min, a_max[, out]) :返回新的矩阵,比给定元素大的元素为a_max,小的为a_min
compress(condition[, axis, out]) :返回满足条件的矩阵
conj() :返回复数的共轭复数
conjugate() :返回所有复数的共轭复数元素
copy([order]) :复制一个矩阵并赋给另外一个对象,b=a.copy()
cumprod([axis, dtype, out]) :返回沿指定轴的元素累积矩阵
cumsum([axis, dtype, out]) :返回沿指定轴的元素累积和矩阵
diagonal([offset, axis1, axis2]) :返回矩阵中对角线的数据
dot(b[, out]) :两个矩阵的点乘
dump(file) :将矩阵存储为指定文件,可以通过pickle.loads()或者numpy.loads()如:a.dump(‘d:\a.txt’)
dumps() :将矩阵的数据转存为字符串.
fill(value) :将矩阵中的所有元素填充为指定的value
flatten([order]) :将矩阵转化为一个一维的形式,但是还是matrix对象
getA() :返回自己,但是作为ndarray返回
getA1():返回一个扁平(一维)的数组(ndarray)
getH() :返回自身的共轭复数转置矩阵
getI() :返回本身的逆矩阵
getT() :返回本身的转置矩阵
max([axis, out]) :返回指定轴的最大值
mean([axis, dtype, out]) :沿给定轴方向,返回其均值
min([axis, out]) :返回指定轴的最小值
nonzero() :返回非零元素的索引矩阵
prod([axis, dtype, out]) :返回指定轴方型上,矩阵元素的乘积.
ptp([axis, out]) :返回指定轴方向的最大值减去最小值.
put(indices, values[, mode]) :用给定的value替换矩阵本身给定索引(indices)位置的值
ravel([order]) :返回一个数组,该数组是一维数组或平数组
repeat(repeats[, axis]) :重复矩阵中的元素,可以沿指定轴方向重复矩阵元素,repeats为重复次数
reshape(shape[, order]) :改变矩阵的大小,如:reshape([2,3])
resize(new_shape[, refcheck]) :改变该数据的尺寸大小
round([decimals, out]) :返回指定精度后的矩阵,指定的位数采用四舍五入,若为1,则保留一位小数
searchsorted(v[, side, sorter]) :搜索V在矩阵中的索引位置
sort([axis, kind, order]) :对矩阵进行排序或者按轴的方向进行排序
squeeze([axis]) :移除长度为1的轴
std([axis, dtype, out, ddof]) :沿指定轴的方向,返回元素的标准差.
sum([axis, dtype, out]) :沿指定轴的方向,返回其元素的总和
swapaxes(axis1, axis2):交换两个轴方向上的数据.
take(indices[, axis, out, mode]) :提取指定索引位置的数据,并以一维数组或者矩阵返回(主要取决axis)
tofile(fid[, sep, format]) :将矩阵中的数据以二进制写入到文件
tolist() :将矩阵转化为列表形式
tostring([order]):将矩阵转化为python的字符串.
trace([offset, axis1, axis2, dtype, out]):返回对角线元素之和
transpose(*axes) :返回矩阵的转置矩阵,不改变原有矩阵
var([axis, dtype, out, ddof]) :沿指定轴方向,返回矩阵元素的方差
view([dtype, type]) :生成一个相同数据,但是类型为指定新类型的矩阵。
ü All方法
>>> a = np.asmatrix('0 2 7; 3 4 8; 5 0 9') >>> a.all() False >>> a.all(axis=0) matrix([[False, False, True]], dtype=bool) >>> a.all(axis=1) matrix([[False], [ True], [False]], dtype=bool) ü Astype方法 >>> a.astype(float) matrix([[ 12., 3., 5.], [ 32., 23., 9.], [ 10., -14., 78.]]) ü Argsort方法 >>> a=np.matrix('12 3 5; 32 23 9; 10 -14 78') >>> a.argsort() matrix([[1, 2, 0], [2, 1, 0], [1, 0, 2]]) ü Clip方法 >>> a matrix([[ 12, 3, 5], [ 32, 23, 9], [ 10, -14, 78]]) >>> a.clip(12,32) matrix([[12, 12, 12], [32, 23, 12], [12, 12, 32]]) ü Cumprod方法 >>> a.cumprod(axis=1) matrix([[ 12, 36, 180], [ 32, 736, 6624], [ 10, -140, -10920]]) ü Cumsum方法 >>> a.cumsum(axis=1) matrix([[12, 15, 20], [32, 55, 64], [10, -4, 74]]) ü Tolist方法 >>> b.tolist() [[12, 3, 5], [32, 23, 9], [10, -14, 78]] ü Tofile方法 >>> b.tofile('d:\b.txt') ü compress()方法 >>> from numpy import * >>> a = array([10, 20, 30, 40]) >>> condition = (a > 15) & (a < 35) >>> condition array([False, True, True, False], dtype=bool) >>> a.compress(condition) array([20, 30]) >>> a[condition] # same effect array([20, 30]) >>> compress(a >= 30, a) # this form a so exists array([30, 40]) >>> b = array([[10,20,30],[40,50,60]]) >>> b.compress(b.ravel() >= 22) array([30, 40, 50, 60]) >>> x = array([3,1,2]) >>> y = array([50, 101]) >>> b.compress(x >= 2, axis=1) # illustrates the use of the axis keyword array([[10, 30], [40, 60]]) >>> b.compress(y >= 100, axis=0) array([[40, 50, 60]])