边长为(1)的正方形(ABCD)的顶点(A,D)分别在(x)轴,(y)轴的正半轴上滑动,则(overrightarrow{OB}cdot overrightarrow{OC})的最大值为(underline{qquadqquad}).
解析:
如图,记(E,F)分别为(AD,BC)的中点,
![](https://img2018.cnblogs.com/blog/1793042/201911/1793042-20191116133834073-1934362391.png)
于是 $$ egin{split} overrightarrow{OB}cdotoverrightarrow{OC}&=left(overrightarrow{OF}+overrightarrow{FC} ight)cdotleft(overrightarrow{OF}+overrightarrow{FB} ight)\ &=|OF|^2-|FB|^2\ &=|OF|^2-dfrac{1}{4}\ &leqslantleft(|OE|+|EF| ight)^2-dfrac14\ &= 2. end{split} $$ 当且仅当$E$点位于$OF$线段上时,上述不等式取等,因此所求表达式的最大值为$2$.