并查集可以快速的求解一个图的连通分量
快速查找加上路劲压缩
1 const int N = 10000; 2 int father[N]; 3 int find_father(int x){ 4 if(x == father[x]) return x; 5 int fa = fine_father(x);//寻找父亲 6 father[x] = fa; 7 return fa; 8 }
接下来是合并,每次输入数据之后进行一次合并
1 void Unite(int a, int b){ 2 int x = find_father(a); 3 int y = find_father(b); 4 if(x != y) father[y] = x; 5 }
最后是初始化操作
1 void init(){ 2 for(int i = 0; i < N; ++i){ 3 p[i] = i; 4 } 5 }
将上述方法封装成类
1 class Union{ 2 public: 3 Union(){ 4 for(int i = 0; i < N; ++i) father[i] = i; 5 } 6 7 int find(const int &x){ 8 return x == father[x] ? x : father[x] = find(father[x]);//路径压缩 9 } 10 11 bool check(const int &x, const int &y){ 12 return find(x) == find(y); 13 } 14 15 void merge(const int &x, const int &y){ 16 if(!check(x, y)) father[father[x]] = father[y]; 17 } 18 19 20 private: 21 const static int N = 10000; 22 int father[N]; 23 };
https://pintia.cn/problem-sets/994805342720868352/problems/994805354108403712例题链接
Some scientists took pictures of thousands of birds in a forest. Assume that all the birds appear in the same picture belong to the same tree. You are supposed to help the scientists to count the maximum number of trees in the forest, and for any pair of birds, tell if they are on the same tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive number N (≤) which is the number of pictures. Then N lines follow, each describes a picture in the format:
K B1 B2 ... BK
where K is the number of birds in this picture, and Bi's are the indices of birds. It is guaranteed that the birds in all the pictures are numbered continuously from 1 to some number that is no more than 1.
After the pictures there is a positive number Q (≤) which is the number of queries. Then Q lines follow, each contains the indices of two birds.
Output Specification:
For each test case, first output in a line the maximum possible number of trees and the number of birds. Then for each query, print in a line Yes
if the two birds belong to the same tree, or No
if not.
Sample Input:
4 3 10 1 2 2 3 4 4 1 5 7 8 3 9 6 4 2 10 5 3 7
Sample Output:
2 10 Yes No
AC代码:
1 #include <iostream> 2 using namespace std; 3 class Union{ 4 public: 5 Union(){ 6 for(int i = 0; i < N; ++i) father[i] = i; 7 } 8 9 int find(const int &x){ 10 return x == father[x] ? x : father[x] = find(father[x]);//路径压缩 11 } 12 13 bool check(const int &x, const int &y){ 14 return find(x) == find(y); 15 } 16 17 void merge(const int &x, const int &y){ 18 if(!check(x, y)) father[father[x]] = father[y]; 19 } 20 21 private: 22 const static int N = 10000; 23 int father[N]; 24 }; 25 26 Union u; 27 int a[10000] = {0}; 28 int main(){ 29 int n; cin >> n; 30 int maxbird = 0; 31 for(int i = 1; i <= n; ++i){ 32 int x; cin >> x; 33 int first; cin >> first; 34 if(first > maxbird) maxbird = first; 35 while(--x){ 36 int h; cin >> h; 37 if(h > maxbird) maxbird = h; 38 u.merge(first, h); 39 } 40 } 41 int tree = 0; 42 for(int i = 1; i <= maxbird; ++i){ 43 int fa = u.find(i); 44 a[fa]++; 45 if(a[fa] == 1) ++tree; 46 } 47 cout << tree << ' ' << maxbird << endl; 48 int m; cin >> m; 49 for(int i = 0; i < m; ++i){ 50 int a, b; cin >> a >> b; 51 u.find(a) == u.find(b) ? cout << "Yes " : cout << "No "; 52 } 53 return 0; 54 }
这个代码每次测试点3,4时间都不一样。。。。。。。。。。。。