• 机器学习实战读书笔记(三)决策树


    3.1 决策树的构造

    优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据.

    缺点:可能会产生过度匹配问题.

    适用数据类型:数值型和标称型.

    一般流程:

    1.收集数据

    2.准备数据

    3.分析数据

    4.训练算法

    5.测试算法

    6.使用算法

    3.1.1 信息增益

    创建数据集

    def createDataSet():
        dataSet = [[1, 1, 'yes'],
                   [1, 1, 'yes'],
                   [1, 0, 'no'],
                   [0, 1, 'no'],
                   [0, 1, 'no']]
        labels = ['no surfacing','flippers']
        #change to discrete values
        return dataSet, labels

    调用一下

    myDat,labels=tree.createDataSet()

    计算给定数据集的香农熵

    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        labelCounts = {}
        for featVec in dataSet: #the the number of unique elements and their occurance
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob,2) #log base 2
        return shannonEnt

    3.1.2 划分数据集

    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
                reducedFeatVec.extend(featVec[axis+1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet

    选择最好的数据集划分方式

    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0; bestFeature = -1
        for i in range(numFeatures):        #iterate over all the features
            featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
            uniqueVals = set(featList)       #get a set of unique values
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet)/float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
            if (infoGain > bestInfoGain):       #compare this to the best gain so far
                bestInfoGain = infoGain         #if better than current best, set to best
                bestFeature = i
        return bestFeature                      #returns an integer

    3.1.3 递归构建决策树

    工作原理:得到原始数据集,基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分.第一次划分后,数据将被向下传递到树分支的下一个节点,在这个节点上,我们可以再次划分数据.因此可以采用递归的原则处理数据集.

    递归结束的条件是:程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类.如果所有实例具有相同的分类,则得到一个叶子节点或者终止块.任何到达叶子节点的数据必然属于叶子节点的分类.

    def majorityCnt(classList):
        classCount={}
        for vote in classList:
            if vote not in classCount.keys(): classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    def createTree(dataSet,labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList): 
            return classList[0]#stop splitting when all of the classes are equal
        if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        return myTree      

    调用一下

    myTree=tree.createTree(myDat,labels)

    结果如下:

    {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

    3.2 在Python中使用Matplotlib注解缓制树形图

    第一个版本

    import matplotlib.pyplot as plt
    
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    arrow_args = dict(arrowstyle="<-")
    
    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
                 xytext=centerPt, textcoords='axes fraction',
                 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    def createPlot():
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
        plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
        plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
        plt.show()

    是这样的图

    重新来一个版本

    def getNumLeafs(myTree):
        numLeafs = 0
        firstStr = myTree.keys()[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                numLeafs += getNumLeafs(secondDict[key])
            else:   numLeafs +=1
        return numLeafs
    
    def getTreeDepth(myTree):
        maxDepth = 0
        firstStr = myTree.keys()[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                thisDepth = 1 + getTreeDepth(secondDict[key])
            else:   thisDepth = 1
            if thisDepth > maxDepth: maxDepth = thisDepth
        return maxDepth
    def retrieveTree(i):
        listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                      {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                      ]
        return listOfTrees[i]
    def plotMidText(cntrPt, parentPt, txtString):
        xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
        yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
        createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    
    def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
        numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
        depth = getTreeDepth(myTree)
        firstStr = myTree.keys()[0]     #the text label for this node should be this
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
        plotMidText(cntrPt, parentPt, nodeTxt)
        plotNode(firstStr, cntrPt, parentPt, decisionNode)
        secondDict = myTree[firstStr]
        plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
                plotTree(secondDict[key],cntrPt,str(key))        #recursion
            else:   #it's a leaf node print the leaf node
                plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
        plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
    #if you do get a dictonary you know it's a tree, and the first element will be another dict

    新版本

    def createPlot(inTree):
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
        #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
        plotTree.totalW = float(getNumLeafs(inTree))
        plotTree.totalD = float(getTreeDepth(inTree))
        plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
        plotTree(inTree, (0.5,1.0), '')
        plt.show()

    把树改一下

    myTree['no surfacing'][3]='maybe'

    重新画,变成这样

    3.3 测试和存储分类器

    3.3.1 测试算法:使用决策树执行分类

    def classify(inputTree,featLabels,testVec):
        firstStr = inputTree.keys()[0]
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)
        key = testVec[featIndex]
        valueOfFeat = secondDict[key]
        if isinstance(valueOfFeat, dict): 
            classLabel = classify(valueOfFeat, featLabels, testVec)
        else: classLabel = valueOfFeat
        return classLabel

    3.3.2 使用算法:决策树的存储

    def storeTree(inputTree,filename):
        import pickle
        fw = open(filename,'w')
        pickle.dump(inputTree,fw)
        fw.close()
        
    def grabTree(filename):
        import pickle
        fr = open(filename)
        return pickle.load(fr)

    3.4 使用决策树预测隐形眼镜类型

    fr=open('G:学习机器学习实战MLiA_SourceCodemachinelearninginactionCh03lenses.txt')
    lenses=[inst.strip().split('	') for inst in fr.readlines()]
    lensesLabels=['age','prescript','astigmatic','tearRate']
    lensesTree=tree.createTree(lenses,lensesLabels)
    treeplot.createPlot(lensesTree)

  • 相关阅读:
    MT【48】分式连加形式下求不等式解集的区间长度
    MT【47】求一道分式的最值
    MT【46】不动点,稳定点几何直观
    MT【45】抛物线外一点作抛物线的切线(尺规作图题)
    MT【44】抛物线不常见性质3
    MT【43】抛物线不常见性质2.
    MT【42】抛物线不常见性质1.
    MT【41】利用不等式妙消参数
    MT【40】一道联赛二试题
    MT【39】构造二次函数证明
  • 原文地址:https://www.cnblogs.com/MarsMercury/p/5023671.html
Copyright © 2020-2023  润新知