• hdu1294 Rooted Trees Problem


    http://acm.hdu.edu.cn/showproblem.php?pid=1294

      组合数学的题,求给定结点数可以构造出多少不同的根树。

      我的做法跟网上其他的做法有点不同,我是用整数划分的方法将一种结点数的子结点全部分解,然后用乘法原理求出组合数是多少。刚开始的时候忘记处理重复子树的会出现交换以后相同的状况,然后通过推理,发现了重复的个数跟组合数有关,所以开始的时候可以用杨辉三角构造组合数。

      例如,如果有n个结点的子树种类有k种,同时有这样的m棵子树,那么这几棵子树的组合数就是Σ((k - i) * C(i + m - 2, m - 2))(0 <= i < k)。然后通过一个深度优先搜索每一种划分的情况,最后就可以得出组合的总数了。

      代码如下;

    View Code
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cstdlib>
      4 
      5 typedef __int64 ll;
      6 
      7 ll lw, hh;
      8 const int mod = 1000000000;
      9 ll rc[41], sm;
     10 ll c[300][21];
     11 bool pr;
     12 
     13 void pre(){
     14     memset(c, 0, sizeof(c));
     15     c[0][0] = 1;
     16     for (int i = 1; i < 300; i++){
     17         c[i][0] = 1;
     18         for (int j = 1; j < 21; j++){
     19             c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
     20         }
     21     }
     22 }
     23 
     24 ll cal(ll a, int n){
     25     ll ret = 0;
     26 
     27     if (a == 1 || n == 1) return a;
     28     if (n == 2) return (a + 1) * a / 2;
     29     if (n == 3){
     30         for (ll i = 1; i <= a; i++){
     31             ret += i * (a + 1 - i);
     32         }
     33 
     34         return ret;
     35     }
     36     for (ll i = 0; i < a; i++){
     37         ret += c[i + n - 2][n - 2] * (a - i);
     38     }
     39 
     40     return ret;
     41 }
     42 
     43 int dv[41];
     44 
     45 void dfs(int rest, int last, int pos){
     46     if (!rest){
     47         ll rt = 1, ls;
     48         int cnt;
     49 
     50         ls = dv[0];
     51         dv[pos] = 0;
     52         cnt = 1;
     53         for (int i = 1; i <= pos; i++){
     54             if (dv[i] != ls){
     55                 rt *= cal(rc[ls], cnt);
     56                 cnt = 1;
     57                 ls = dv[i];
     58             }
     59             else cnt++;
     60             //if (pr) printf("%d ", dv[i - 1]);
     61         }
     62         //if (pr) printf("rt  %I64d\n", rt);
     63         sm += rt;
     64         return ;
     65     }
     66     if (last > rest) last = rest;
     67     for (int i = last; i > 0; i--){
     68         dv[pos] = i;
     69         dfs(rest - i, i, pos + 1);
     70     }
     71 }
     72 
     73 void print(){
     74     for (int i = 0; i <= 40; i++){
     75     }
     76     rc[1] = rc[2] = 1;
     77     rc[3] = 2;
     78     for (int i = 4; i <= 40; i++){
     79         if (i == 13) pr = true;
     80         else pr = false;
     81         sm = 0;
     82         dfs(i - 1, i - 1, 0);
     83         rc[i] = sm;
     84 #ifndef ONLINE_JUDGE
     85         printf(" %I64d,", sm);
     86         puts("");
     87 #endif
     88     }
     89 }
     90 
     91 int main(){
     92 #ifndef ONLINE_JUDGE
     93     freopen("in", "w", stdout);
     94 #endif
     95     pre();
     96     print();
     97 
     98 #ifdef ONLINE_JUDGE
     99     int n;
    100     while (~scanf("%d", &n))
    101         printf("%I64d\n", rc[n]);
    102 #endif
    103 
    104     return 0;
    105 }

    yuan神的做法:http://www.cppblog.com/Yuan/archive/2010/10/22/130929.html

      模仿yuan神打了一个代码,关键的地方在于重复集合的组合:

      引用:由于子树不分顺序,所以枚举出来的相同规模的子树是一种有重集的组合 ,用公式C(n+m-1,m)

    View Code
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <cmath>
     5 #include <iostream>
     6 
     7 using namespace std;
     8 
     9 typedef __int64 ll;
    10 ll ans[41], cnt[41];
    11 
    12 ll combi(ll n, ll m){
    13     ll ret = 1;
    14 
    15     if (m > n - m) m = n - m;
    16     for (ll i = 0; i < m; i++){
    17         ret *= n - i;
    18         ret /= i + 1;
    19     }
    20 
    21     return ret;
    22 }
    23 
    24 void dfs(int n, int cur, int rest){
    25     if (!rest){
    26         ll pro = 1;
    27 
    28         for (int i = 1; i <= n; i++){
    29             if (cnt[i])
    30                 pro *= combi(ans[i] - 1 + cnt[i], cnt[i]);
    31         }
    32         ans[n] += pro;
    33 
    34         return ;
    35     }
    36     if (cur > rest) return ;
    37     cnt[cur]++;
    38     dfs(n, cur, rest - cur);
    39     cnt[cur]--;
    40     dfs(n, cur + 1, rest);
    41 }
    42 
    43 void pre(){
    44     ans[1] = ans[2] = 1;
    45     for (int i = 3; i <= 40; i++){
    46         dfs(i, 1, i - 1);
    47     }
    48 }
    49 
    50 int main(){
    51     pre();
    52     int n;
    53 
    54     while (cin >> n){
    55         cout << ans[n] << endl;
    56     }
    57 
    58     return 0;
    59 }

    ——written by Lyon

  • 相关阅读:
    uva 442 Matrix Chain Multiplication
    结对编程项目之队友代码分析
    [转] 为什么要使用NoSQL
    Compare Linq2Sql with NHibernate
    使用linq2sql 的DetailView 如何保存多对多关系
    工作流入门
    XML字段的用处
    DesignTimeResourceProviderFactory 不给力啊
    如何给XMLDatasource做分页和排序
    ORM的烦恼
  • 原文地址:https://www.cnblogs.com/LyonLys/p/hdu_1294_Lyon.html
Copyright © 2020-2023  润新知