题目链接:传送门
思路:
题目中的m为20,而不是26,显然在疯狂暗示要用状压来做。
考虑状压字母集合。如果想要保存字母集合中的各字母的顺序,那就和经典的n!的状态的状压没什么区别了,时间复杂度为O(m22m),是不可行的,所以本题肯定有更好的做法。
考虑不保存字母集合中各字母的顺序。那么问题来了,新加入一个字母后,要如何计算这个新的字母对slowness产生的影响呢?
不妨设当前已经被选过的字母集合为i(0 ≤ i ≤ (1<<m)),当前要加入的字母j(0 ≤ j < m),且(i>>j&1) == 0。
考虑每次都把新的字母j放在i中的所有字母的右边,则字母j的加入对答案的影响为:
$sum_{kin i}cnt_{j,k}*(pos_{j}-pos_{k}) +sum_{k otin i}cnt_{j,k}*(pos_{k}-pos_{j}) $,其中$cnt_{j, k}$表示输入密码时,从j移动到k和从k移动到j的次数之和
其中,$pos_{j}$已知,为i中1的个数,但是pos_{k}因为没有记录i中各个字母的顺序,无法得知。
那么我们不妨只直接计算字母j对应的$pos_{j}$对答案产生的影响:$sum_{kin i}cnt_{j,k}*pos_{j}-sum_{k otin i}cnt_{j,k}*pos_{j}$
这样的做法还是O(m22m),但是预处理出这个东西$sum_{kin i}cnt_{j,k}*pos_{j}$,就可以把时间复杂度优化到O(m2m)了。
代码:O(m2m)
#include <bits/stdc++.h> #define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0) #define N 100005 #define M 20 #define INF 0x3f3f3f3f #define mk(x) (1<<x) // be conscious if mask x exceeds int #define sz(x) ((int)x.size()) #define mp(a,b) make_pair(a, b) #define endl ' ' #define lowbit(x) (x&-x) using namespace std; typedef long long ll; typedef double db; /** fast read **/ template <typename T> inline void read(T &x) { x = 0; T fg = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') fg = -1; ch = getchar(); } while (isdigit(ch)) x = x*10+ch-'0', ch = getchar(); x = fg * x; } template <typename T, typename... Args> inline void read(T &x, Args &... args) { read(x), read(args...); } string s; int f[mk(M)], cnt[mk(M)]; int main() { int n, m; read(n, m); cin >> s; for (int i = 1; i < n; i++) { int l = s[i-1] - 'a', r = s[i] - 'a'; cnt[mk(l) | mk(r)]++; } for (int i = 0; i < m; i++) { for (int j = 0; j < mk(m); j++) { if (j & mk(i)) cnt[j] += cnt[j ^ mk(i)]; } } memset(f, 0x3f, sizeof f); f[0] = 0; for (int i = 0; i < mk(m); i++) { for (int j = 0; j < m; j++) { if ((i & mk(j)) == 0) { int add = n-1; add -= cnt[i ^ mk(j)] + cnt[mk(m)-1 - (i ^ mk(j))]; f[i ^ mk(j)] = min(f[i ^ mk(j)], f[i] + add); } } } cout << f[mk(m)-1] << endl; return 0; }