• 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价


    python3 学习机器学习api

    使用了三种集成回归模型

    git: https://github.com/linyi0604/MachineLearning

    代码:

      1 from sklearn.datasets import load_boston
      2 from sklearn.cross_validation import train_test_split
      3 from sklearn.preprocessing import StandardScaler
      4 from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor
      5 from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
      6 import numpy as np
      7 
      8 '''
      9 随机森林回归
     10 极端随机森林回归
     11 梯度提升回归
     12 
     13 通常集成模型能够取得非常好的表现
     14 '''
     15 
     16 # 1 准备数据
     17 # 读取波士顿地区房价信息
     18 boston = load_boston()
     19 # 查看数据描述
     20 # print(boston.DESCR)   # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价
     21 # 查看数据的差异情况
     22 # print("最大房价:", np.max(boston.target))   # 50
     23 # print("最小房价:",np.min(boston.target))    # 5
     24 # print("平均房价:", np.mean(boston.target))   # 22.532806324110677
     25 
     26 x = boston.data
     27 y = boston.target
     28 
     29 # 2 分割训练数据和测试数据
     30 # 随机采样25%作为测试 75%作为训练
     31 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33)
     32 
     33 # 3 训练数据和测试数据进行标准化处理
     34 ss_x = StandardScaler()
     35 x_train = ss_x.fit_transform(x_train)
     36 x_test = ss_x.transform(x_test)
     37 
     38 ss_y = StandardScaler()
     39 y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
     40 y_test = ss_y.transform(y_test.reshape(-1, 1))
     41 
     42 # 4 三种集成回归模型进行训练和预测
     43 # 随机森林回归
     44 rfr = RandomForestRegressor()
     45 # 训练
     46 rfr.fit(x_train, y_train)
     47 # 预测 保存预测结果
     48 rfr_y_predict = rfr.predict(x_test)
     49 
     50 # 极端随机森林回归
     51 etr = ExtraTreesRegressor()
     52 # 训练
     53 etr.fit(x_train, y_train)
     54 # 预测 保存预测结果
     55 etr_y_predict = rfr.predict(x_test)
     56 
     57 # 梯度提升回归
     58 gbr = GradientBoostingRegressor()
     59 # 训练
     60 gbr.fit(x_train, y_train)
     61 # 预测 保存预测结果
     62 gbr_y_predict = rfr.predict(x_test)
     63 
     64 # 5 模型评估
     65 # 随机森林回归模型评估
     66 print("随机森林回归的默认评估值为:", rfr.score(x_test, y_test))
     67 print("随机森林回归的R_squared值为:", r2_score(y_test, rfr_y_predict))
     68 print("随机森林回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
     69                                           ss_y.inverse_transform(rfr_y_predict)))
     70 print("随机森林回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
     71                                              ss_y.inverse_transform(rfr_y_predict)))
     72 
     73 # 极端随机森林回归模型评估
     74 print("极端随机森林回归的默认评估值为:", etr.score(x_test, y_test))
     75 print("极端随机森林回归的R_squared值为:", r2_score(y_test, gbr_y_predict))
     76 print("极端随机森林回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
     77                                             ss_y.inverse_transform(gbr_y_predict)))
     78 print("极端随机森林回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
     79                                                ss_y.inverse_transform(gbr_y_predict)))
     80 
     81 # 梯度提升回归模型评估
     82 print("梯度提升回归回归的默认评估值为:", gbr.score(x_test, y_test))
     83 print("梯度提升回归回归的R_squared值为:", r2_score(y_test, etr_y_predict))
     84 print("梯度提升回归回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
     85                                             ss_y.inverse_transform(etr_y_predict)))
     86 print("梯度提升回归回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
     87                                                ss_y.inverse_transform(etr_y_predict)))
     88 
     89 '''
     90 随机森林回归的默认评估值为: 0.8391590262557747
     91 随机森林回归的R_squared值为: 0.8391590262557747
     92 随机森林回归的均方误差为: 12.471817322834646
     93 随机森林回归的平均绝对误差为: 2.4255118110236227
     94 
     95 极端随机森林回归的默认评估值为: 0.783339502805047
     96 极端随机森林回归的R_squared值为: 0.8391590262557747
     97 极端随机森林回归的均方误差为: 12.471817322834646
     98 极端随机森林回归的平均绝对误差为: 2.4255118110236227
     99 
    100 GradientBoostingRegressor回归的默认评估值为: 0.8431187344932869
    101 GradientBoostingRegressor回归的R_squared值为: 0.8391590262557747
    102 GradientBoostingRegressor回归的均方误差为: 12.471817322834646
    103 GradientBoostingRegressor回归的平均绝对误差为: 2.4255118110236227
    104 '''
  • 相关阅读:
    「Poetize10」封印一击
    「Poetize10」能量获取
    vijosP1499炸毁燃料库
    BZOJ3550: [ONTAK2010]Vacation
    总结#3--一类最小割问题
    BZOJ1976: [BeiJing2010组队]能量魔方 Cube
    BZOJ2132: 圈地计划
    BZOJ2127: happiness
    BZOJ1754: [Usaco2005 qua]Bull Math
    920. 会议室
  • 原文地址:https://www.cnblogs.com/Lin-Yi/p/8972051.html
Copyright © 2020-2023  润新知