数位dp 笔记
数位dp一直是我的弱项,惦记好久了,最近补了补,感觉还行。
解决的问题 & 主体思想
解决一个区间中,满足某些条件(与每一位有关)的数的数量(或者带权的和)。
做法:考虑求前缀 ([1,x]) 的答案。
如果你是新手,请先考虑一下大概要怎么做,再继续看
先把位(不一定是十进制)拆开来,然后是一个形如 "dp到第 (i) 位,..." 的 dp,一般可以用记忆化搜索,一位一位的填,使得它看起来友好一些(个人感觉这样可读性好)。
然后要解决 (le x) 的限制。每次按照这样的规则来填数字:
- 默认每一位都不能超过 (x) 对应的位
- 如果有一位小于了 (x) 对应的位,则后面就没限制了
这个很好理解。比如说现在钦点下来是 (123***),(x=123456),那后面显然不能超过 (456)。
而如果现在钦点下来是 (122***),那它就算是 (122999),也不会超过 (x)。
用一个 lim
标记维护当前是否卡到上界。注意它应该被记在 dp 状态里。
入门 —— windy数
求区间满足:任意相邻两位的差都不超过 (2) 的数,的数量。
dp 状态:到第几位,当前选了什么(以决定下一个可不可以选),lim
然后每次 dfs 扩展的时候,判断一下下一个填的是否合法,再加个记忆化,就行了。
绕一个弯 —— 萌数
求区间满足:将数看成字符串,没有任何长度 (ge 2) 的回文串的数,的数量。
没有任何长度 (ge 2) 回文串 ( ightarrow) 任意一个字符和它前面一个,两个都不同。
这样就保证了没有长度等于 (2,3) 的回文串,然后其余的回文串都是由这两种扩展出来的,自然也没有了。
剩下就很好 dp 了,和上一个差不多。
the end? —— 恨7不成妻
hdu的题,我第一次学数位dp的时候被老师称作“毕业题”
你要能把这个题写出来,你数位dp就差不多了
当时看着老师标程打的,现在简单复习了一下,发现还挺好想的 然后把它秒了,其实就是一个傻逼缝合怪题
要满足三个条件:
- 不能有数位7
- 数位和不能是7的倍数
- 数本身不能是7的倍数
区间求满足条件平方和。
这里涉及到一个带权求和。带权求和状态要变一下,表示从这位开始截取,的带权和。
比如说 (x=123),填好了 (11*),满足条件的数有 (111),(113),(114),(116),(118)
带权和为 (1^2+3^2+4^2+6^2+8^2=126)
为什么要做一步截取呢?因为要方便转移。考虑转移,相当于,我先确定好后面若干位,在它们的前面都填上相同的数字(这里相当于放上了 (1))
然后填相同的数字可以看做是加法 (这里相当于 (+10))
然后平方和,整体加,好做吧:再维护数量和一次方和,设为 dp[...][0/1/2]
,对应数量,和,平方和
设现在整体加的为 (a),后面一位的 dp[...][0/1/2]
记下来为 nex[0/1/2]
,现在的是 cur[0/1/2]
,则有:
cur[0]+=nex[0];
cur[1]+=nex[1]+nex[0]*a;
cur[2]+=nex[2]+2*nex[1]*a+nex[0]*a*a
(就是拆括号搞一下就行)
对于条件:
- 每次不填 (7)
- 记录数位和对 (7) 的余数,放在状态里,取 (0) 那个状态
- 记录整个数对 (7) 的余数,放在状态里,取 (0) 那个状态
小心细节 [SDOI2016]储能表
求 (sumlimits_{i=0}^{n-1} sumlimits_{j=0}^{m-1} max(ioplus j-k,0))
(n,m,kle 10^{18})
后面等价成 (>k) 的和,减去 (>k) 的数量乘以 (k)
拆成二进制,做数位 (dp)。记下三个 lim
,表示是否卡在 (n) 的上界,(m) 的上界,(k) 的下界 (因为 (k) 那边是个 (>) 的限制)
然后上一题类似的求一下带权和就行了,要维护一下数量和总和。
复杂度起飞 [AHOI2009]同类分布
由于数位 dp 的基本模型只有一个 log,所以可以带很多别的
题意:求区间能整除数位和的数的数量
比如 (12) 就满足条件因为 (1+2) 是 (12) 的倍数
(xle 10^{18})
注意到数位和不会超过 (9 imes 18=162)
先枚举数位和 (k),然后 dp 里设两维,一维表示当前数位和,一维表示当前数模 (k) 的余数。最后取答案就是 (\%k=0),数位和 (=k) 的那个状态
复杂度是 ((9 imes log n^3)log n),非常暴力