• 最长k可重线段集问题


    题目描述

    题解:

    由于线段可以出现平行于$y$轴的情况,

    我们要拆点。

    然后分情况讨论。

    具体方法不赘述。

    代码:

    #include<cmath>
    #include<queue>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define N 2050
    #define ll long long
    const int inf = 0x3f3f3f3f;
    const ll  Inf = 0x3f3f3f3f3f3f3f3fll;
    inline int rd()
    {
        int f=1,c=0;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){c=10*c+ch-'0';ch=getchar();}
        return f*c;
    }
    int n,m,hed[N],cnt=-1,S,T,tot=0;
    struct seg
    {
        int l,r;
        ll w;
    }s[N];
    struct Pair
    {
        int x,id,k;
        Pair(){}
        Pair(int x,int i,int k):x(x),id(i),k(k){}
    }p[N];
    bool cmp(Pair a,Pair b)
    {
        if(a.x!=b.x)return a.x<b.x;
        return a.k<b.k;
    }
    struct EG
    {
        int to,nxt;
        ll w,c;
    }e[N*N*4];
    void ae(int f,int t,ll w,ll c)
    {
        e[++cnt].to = t;
        e[cnt].nxt = hed[f];
        e[cnt].w = w;
        e[cnt].c = c;
        hed[f] = cnt;
    }
    void AE(int f,int t,ll w,ll c)
    {
        ae(f,t,w,c);
        ae(t,f,0,-c);
    }
    ll dep[N],fl[N];
    int pre[N],fa[N];
    bool vis[N];
    queue<int>q;
    bool spfa()
    {
        memset(dep,0x3f,sizeof(dep));
        dep[S] = 0,fl[S] = inf,vis[S] = 1;
        q.push(S);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            for(int j=hed[u];~j;j=e[j].nxt)
            {
                int to = e[j].to;
                if(e[j].w&&dep[to]>dep[u]+e[j].c)
                {
                    dep[to] = dep[u]+e[j].c;
                    fl[to] = min(fl[u],e[j].w);
                    pre[to] = j,fa[to] = u;
                    if(!vis[to])
                    {
                        vis[to] = 1;
                        q.push(to);
                    }
                }
            }
            vis[u] = 0;
        }
        return dep[T]!=Inf;
    }
    ll mcmf()
    {
        ll ret = 0;
        while(spfa())
        {
            ret+=fl[T]*dep[T];
            int u = T;
            while(u!=S)
            {
                e[pre[u]].w-=fl[T];
                e[pre[u]^1].w+=fl[T];
                u = fa[u];
            }
        }
        return ret;
    }
    vector<ll>ve[N];
    int main()
    {
        n = rd(),m = rd();
        S = 0,T = 1;
        memset(hed,-1,sizeof(hed));
        int k = 0;
        for(int x,y,i=1;i<=n;i++)
        {
            s[i].l=rd(),x=rd(),s[i].r=rd(),y=rd(),s[i].w=(ll)sqrt(1ll*(s[i].r-s[i].l)*(s[i].r-s[i].l)+1ll*(x-y)*(x-y));
            if(s[i].l>s[i].r)
            {
                swap(s[i].l,s[i].r);
            }
            p[++tot] = Pair(s[i].l,i,0);
            p[++tot] = Pair(s[i].r,i,1);
        }
        sort(p+1,p+1+tot,cmp);
        for(int las=-1,i=1;i<=tot;i++)
        {
            if(las!=p[i].x)
            {
                las = p[i].x;
                k++;
            }
            if(!p[i].k)s[p[i].id].l = k;
            else
            {
                if(s[p[i].id].l!=k)AE(s[p[i].id].l<<1|1,k<<1,1,-s[p[i].id].w);
                else AE(k<<1,k<<1|1,1,-s[p[i].id].w);
            }
        }
        AE(S,2,m,0);AE(k<<1|1,T,m,0);
        for(int i=1;i<k;i++)
            AE(i<<1|1,(i+1)<<1,m,0);
        for(int i=1;i<=k;i++)
            AE(i<<1,i<<1|1,m,0);
        printf("%lld
    ",-mcmf());
        return 0;
    }
  • 相关阅读:
    C语言II作业01
    C语言寒假大作战04
    C语言寒假大作战03
    C语言寒假大作战02
    C语言寒假大作战01
    C语言ll作业01
    C语言寒假大作战04
    C语言寒假大作战03
    C语言寒假大作战02
    C语言寒假大作战01
  • 原文地址:https://www.cnblogs.com/LiGuanlin1124/p/10256758.html
Copyright © 2020-2023  润新知