• 分配问题


    题目描述

    题解:

    裸的最小、大费用最大流。

    其实和最小费用最大流一样,只是推进去时费用取反,输出也取反。

    代码:

    #include<queue>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define N 105
    #define ll long long
    const int inf = 0x3f3f3f3f;
    const ll Inf  = 0x3f3f3f3f3f3f3f3fll;
    inline int rd()
    {
        int f=1,c=0;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){c=10*c+ch-'0';ch=getchar();}
        return f*c;
    }
    int n,S,T;
    struct Mcmf
    {
        int hed[2*N],cnt;
        Mcmf()
        {
            memset(hed,-1,sizeof(hed));
            cnt=-1;
        }
        struct EG
        {
            int to,nxt;
            ll w,c;
        }e[N*N*2];
        void ae(int f,int t,ll w,ll c)
        {
            e[++cnt].to = t;
            e[cnt].nxt = hed[f];
            e[cnt].w = w;
            e[cnt].c = c;
            hed[f] = cnt;
        }
        ll fl[N],dis[N];
        int fa[N],pre[N];
        bool vis[N];
        queue<int>q;
        bool spfa()
        {
            memset(dis,0x3f,sizeof(dis));
            dis[S] = 0,fl[S] = Inf,vis[S] = 1;
            q.push(S);
            while(!q.empty())
            {
                int u = q.front();
                q.pop();
                for(int j=hed[u];~j;j=e[j].nxt)
                {
                    int to = e[j].to;
                    if(e[j].w&&dis[to]>dis[u]+e[j].c)
                    {
                        dis[to] = dis[u]+e[j].c;
                        fl[to] = min(fl[u],e[j].w);
                        pre[to] = j,fa[to] = u;
                        if(!vis[to])
                        {
                            vis[to] = 1;
                            q.push(to);
                        }
                    }
                }
                vis[u] = 0;
            }
            return dis[T]!=Inf;
        }
        ll mcmf()
        {
            ll ret = 0;
            while(spfa())
            {
                ret+=fl[T]*dis[T];
                int u = T;
                while(u!=S)
                {
                    e[pre[u]].w-=fl[T];
                    e[pre[u]^1].w+=fl[T];
                    u = fa[u];
                }
            }
            return ret;
        }
    }f1,f2;
    ll c[N][N];
    
    int main()
    {
        n = rd(),S = 2*n+1,T = 2*n+2;
        for(int i=1;i<=n;i++)
        {
            f1.ae(S,i,1,0);
            f1.ae(i,S,0,0);
            f1.ae(i+n,T,1,0);
            f1.ae(T,i+n,0,0);
            f2.ae(S,i,1,0);
            f2.ae(i,S,0,0);
            f2.ae(i+n,T,1,0);
            f2.ae(T,i+n,0,0);
        }
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
            {
                c[i][j] = rd();
                f1.ae(i,j+n,1,c[i][j]);
                f1.ae(j+n,i,0,-c[i][j]);
                f2.ae(i,j+n,1,-c[i][j]);
                f2.ae(j+n,i,0,c[i][j]);
            }
        printf("%lld
    %lld
    ",f1.mcmf(),-f2.mcmf());
        return 0;
    }
  • 相关阅读:
    SoftMax 回归(与Logistic 回归的联系与区别)
    OneNote转PDF
    数据库的模式分解相关算法规范步骤
    机器学习
    Java学习
    K-means 聚类
    Java学习
    [DBNETLIB][ConnectionOpen(connect()).]SQL Server 不存在或拒绝访问解决方方法
    sql语句技巧
    刚看到《SQL语法大全》、补全一下
  • 原文地址:https://www.cnblogs.com/LiGuanlin1124/p/10255909.html
Copyright © 2020-2023  润新知