堆排序,是一个非常优秀的排序算法,像合并排序而不像插入排序,其运行时间为O(nlgn),像插入排序而不像合并排序,它是一种原地排序算法,所以说,堆排序将插入排序和合并排序的优点结合起来了。
堆排序借助于堆数据结构,(二叉)堆是一个数组,它可以被视为一棵完全二叉树,树中每个节点与数组中存放该节点值得那个元素对应。
堆排序算法可以分为以下几步:
1) 建立原先数列对应的最大(或最小)堆。
2) 重复n-1次循环,每次选出一个最大(或最小)值,并放到合适的位置。
Java代码实现如下:
1 public class HeapSort implements SortAlgorithm { 2 3 private IntArray A = null; 4 5 public HeapSort() { 6 A = new IntArray(); 7 } 8 9 private class IntArray { 10 public int[] aArray = null; 11 public int heapSize = 0; 12 } 13 14 @Override 15 public void sort(int[] A) { 16 maxHeapSort(A); 17 } 18 19 @Override 20 public void sort(int[] A, boolean isInc) { 21 if (isInc) { 22 maxHeapSort(A); 23 } else { 24 minHeapSort(A); 25 } 26 } 27 28 /** 29 * 最大堆排序,升序 30 * 31 * @param A 32 * int数组 33 */ 34 private void maxHeapSort(int[] A) { 35 this.A.aArray = A; 36 this.A.heapSize = A.length; 37 buildMaxHeap(this.A); 38 for (int i = A.length; i >= 2; i--) { 39 exchange(1, i); 40 this.A.heapSize = this.A.heapSize - 1; 41 maxHeapify(this.A, 1); 42 } 43 } 44 45 /** 46 * 最小堆排序,降序 47 * 48 * @param A 49 * int数组 50 */ 51 private void minHeapSort(int[] A) { 52 this.A.aArray = A; 53 this.A.heapSize = A.length; 54 buildMinHeap(this.A); 55 for (int i = A.length; i >= 2; i--) { 56 exchange(1, i); 57 this.A.heapSize = this.A.heapSize - 1; 58 minHeapify(this.A, 1); 59 } 60 } 61 62 /** 63 * 使得以index为根的子树成为最大堆 64 * 65 * @param A 66 * int数组 67 * @param index 68 * 以index为根,从1开始 69 */ 70 private void maxHeapify(IntArray A, int index) { 71 while (index < A.heapSize / 2 + 1) { 72 int left = left(index); 73 int right = right(index); 74 int largest = 0; 75 if (left <= A.heapSize && A.aArray[left - 1] > A.aArray[index - 1]) { 76 largest = left; 77 } else { 78 largest = index; 79 } 80 if (right <= A.heapSize 81 && A.aArray[right - 1] > A.aArray[largest - 1]) { 82 largest = right; 83 } 84 if (index != largest) { 85 exchange(index, largest); 86 index = largest; 87 } else { 88 index = A.heapSize / 2 + 1; 89 } 90 } 91 } 92 93 /** 94 * 使得以index为根的子树成为最小堆 95 * 96 * @param A 97 * int数组 98 * @param index 99 * 以index为根,从1开始 100 */ 101 private void minHeapify(IntArray A, int index) { 102 while (index < A.heapSize / 2 + 1) { 103 int left = left(index); 104 int right = right(index); 105 int smallest = 0; 106 if (left <= A.heapSize && A.aArray[left - 1] < A.aArray[index - 1]) { 107 smallest = left; 108 } else { 109 smallest = index; 110 } 111 if (right <= A.heapSize 112 && A.aArray[right - 1] < A.aArray[smallest - 1]) { 113 smallest = right; 114 } 115 if (index != smallest) { 116 exchange(index, smallest); 117 index = smallest; 118 } else { 119 index = A.heapSize / 2 + 1; 120 } 121 } 122 } 123 124 /** 125 * 建最大堆 126 * 127 * @param A 128 * int数组 129 */ 130 private void buildMaxHeap(IntArray A) { 131 for (int i = A.aArray.length / 2; i >= 1; i--) { 132 maxHeapify(A, i); 133 } 134 } 135 136 /** 137 * 建最小堆 138 * 139 * @param A 140 * int数组 141 */ 142 private void buildMinHeap(IntArray A) { 143 for (int i = A.aArray.length / 2; i >= 1; i--) { 144 minHeapify(A, i); 145 } 146 } 147 148 private int left(int index) { 149 return 2 * index; 150 } 151 152 private int right(int index) { 153 return 2 * index + 1; 154 } 155 156 private void exchange(int i, int j) { 157 int temp = A.aArray[i - 1]; 158 A.aArray[i - 1] = A.aArray[j - 1]; 159 A.aArray[j - 1] = temp; 160 } 161 162 }
PS:zhuangzhuang1988兄再来一个~O(∩_∩)O哈哈~
标签: 算法