• 13 DFT变换的性质


    DFT变换的性质

    线性性质

    [egin{aligned} y[n]&=ax[n]+bw[n]xrightarrow{DFT}Y[k]=sum_{n=0}^{N-1}(ax[n]+bw[n])W_N^{kn}\ &=asum_{n=0}^{N-1}x[n]W_N^{kn}+bsum_{n=0}^{N-1}w[n]W_N^{kn} \ &=aX[k]+bW[k] end{aligned} ]

    时移性质

    [egin{aligned} x[n-n_0]&xrightarrow{DFT}sum_{n=0}^{N-1}x[<n-n_0>_N]e^{-jfrac{2pi k}{N}n} \ &xrightarrow{m=n-n_0}sum_{m=-n_0}^{N-n_0-1}x[<m>_N]e^{-jfrac{2pi k}{N}(m+n_0)} \ &=W_{N}^{kn_0}sum_{m=0}^{N-1}x[m]W_{N}^{km} \ &=W_{N}^{kn_0}X[k] end{aligned} ]

    频移性质

    [egin{aligned} W_N^{-k_0n}x[n]xrightarrow{DFT}sum_{n=0}^{N-1}x[n]W_N^{(k-k_0)n}=X[<k-k_0>_N] end{aligned} ]

    时域反转

    [egin{aligned} x[<-n>_N]&xrightarrow{DFT}sum_{n=0}^{N-1}x[<-n>_N]W_{N}^{kn} \ &xrightarrow{m=-n}sum_{m=-(N-1)}^{0}x[<m>_N]W_{N}^{-km} \ &=sum_{m=0}^{N-1}x[m]W_{N}^{-km} \ &=X[<-k>_N] end{aligned} ]

    时域共轭

    [egin{aligned} x^{*}[n]&xrightarrow{DFT}sum_{n=0}^{N-1}x^{*}[n]W_N^{kn} \ &=(sum_{n=0}^{N-1}x[n]W_N^{-kn})^{*} \ &=X^{*}[<-k>_N] end{aligned} ]

    由上面两个可以推得

    [color{red}x^{*}[<-n>_N]xrightarrow{DFT}X^{*}[k] ]

    对称性质

    [x_{cs}[n]=frac{1}{2}(x[n]+x^{*}[<-n>_N])xrightarrow{DFT}frac{1}{2}(X[k]+X^{*}[k])=X_{re}[k] ]

    [x_{ca}[n]=frac{1}{2}(x[n]-x^{*}[<-n>_N])xrightarrow{DFT}frac{1}{2}(X[k]-X^{*}[k])=jX_{im}[k] ]

    [x_{re}[n]=frac{1}{2}(x[n]+x^{*}[n])xrightarrow{DFT}frac{1}{2}(X[k]+X^{*}[<-k>_N])=X_{cs}[k] ]

    [jx_{im}[n]=frac{1}{2}(x[n]-x^{*}[n])xrightarrow{DFT}frac{1}{2}(X[k]-X^{*}[<-k>_N])=X_{ca}[k] ]

    卷积性质

      假设(x[n],w[n])都是长度为(N)的有限长序列,它们的DFT分别为(X[k],W[k]),假设它们的有值区间为(0 leq n leq N-1​),那么它们进行圆周卷积的DFT为:

    [egin{aligned} x[n]otimes w[n]&=sum_{m=0}^{N-1}x[m]w[<n-m>_N] \ &xrightarrow{DFT}sum_{n=0}^{N-1}sum_{m=0}^{N-1}x[m]w[<n-m>_N]W_N^{kn} \ &=sum_{m=0}^{N-1}x[m]sum_{n=0}^{N-1}frac{1}{N}sum_{r=0}^{N-1}W[r]W_N^{r(n-m)}W_N^{kn} \ &=sum_{m=0}^{N-1}x[m]sum_{r=0}^{N-1}W[r]W_N^{km}(frac{1}{N}sum_{n=0}^{N-1}W_N^{k-r}) \ &=sum_{m=0}^{N-1}x[m]W_N^{km}W[k] \ &=X[k]W[k] end{aligned} ]

    上式中用到了

    [frac{1}{N}sum_{n=0}^{N-1}W_N^{k-r}= egin{cases} 1, k -r = lN , \, l=0,1,...\ 0, 其它 end{cases} ]

    Parseval定理

    [egin{aligned} sum_{n=0}^{N-1}x[n]y^{*}[n]&=sum_{n=0}^{N-1}x[n](frac{1}{N}sum_{k=0}^{N-1}Y[k]W_N^{-kn})^{*}\ &=frac{1}{N}sum_{k=0}^{N-1}Y^{*}[k]sum_{n=0}^{N-1}x[n]W_N^{kn}\ &=frac{1}{N}sum_{k=0}^{N-1}X[k]Y^{*}[k] end{aligned} ]

    特别的,当(x[n]=y[n]​)

    [sum_{n=0}^{N-1}vert x[n]vert^2=frac{1}{N}sum_{k=0}^{N-1}vert X[k]vert^2 ]

  • 相关阅读:
    Spring Boot (20) 拦截器
    Spring Boot (19) servlet、filter、listener
    Spring Boot (18) @Async异步
    Spring Boot (17) 发送邮件
    Spring Boot (16) logback和access日志
    Spring Boot (15) pom.xml设置
    Spring Boot (14) 数据源配置原理
    Spring Boot (13) druid监控
    Spring boot (12) tomcat jdbc连接池
    Spring Boot (11) mybatis 关联映射
  • 原文地址:https://www.cnblogs.com/LastKnight/p/10958058.html
Copyright © 2020-2023  润新知