• qplot()函数的详细用法


    qplot()函数的详细用法:

    library(ggplot2)

    # 测试数据集,ggplot2内置的钻石数据
    qplot(carat, price, data = diamonds)
    dsmall <- diamonds[sample(nrow(diamonds), 100), ] #对diamonds数据集进行抽样

    #1. 按color,size,shape的基本分类可视化

    #1.1 简单的散点图(利用color分类,不同颜色的钻石由不同颜色的点代表)
    qplot(carat, price, data = dsmall, colour = color)

     



    #1.2. 简单的散点图(利用shape分类,不同的切割方式由不同形状的点代表)
    qplot(carat, price, data = dsmall, shape = cut)

     



    #2. 绘制不同类型的图表:geom参数

    qplot(x,y,data=data,geom="")中的geom=""用来控制输出的图形类型
    I. 两变量图
    (1) geom="points",默认参数,绘制散点图(x,y)
    (2) geom="smooth" 绘制平滑曲线(基于loess, gam, lm ,rlm,glm)
    (3) geom="boxplot" 绘制箱线图 ,当x为属性变量(factor),y为数值变量时

    II.单变量图
    (4) geom="histogram",直方图
    (5) geom="density",核密度估计图
    (6) geom="bar",条形图barchart

    III.时间序列
    (7) geom="line",折线图,可用于时间序列(当x=date)
    (8) geom="path",路径图(参见后文)


    # 2.1 同时绘制散点图+平滑直线
    qplot(carat, price, data = dsmall, geom=c("point","smooth"))

     



    #参数调整:method=""等
    #(a). method = "loess", 默认平滑算法, 通过span=调整窗宽, span=0(波动) 到 span=1(光滑)
    qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
          method = "loess",span=0.2)

     



    # (b). method = "gam": GAM 在大数据时比loess高效,需要载入 mgcv 包
    library(mgcv)
    qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
          method="gam", formula = y ~ s(x))

    # (c). method="lm", 线性平滑
    qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
         method = "lm")

    # method="lm",formula = y ~ ns(x, 3),三次自然样条,需要载入splines包
    library(splines)
    qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
          method = "lm", formula = y ~ ns(x, 3))

    # method = "rlm", robust linear model, 受异常值影响小,需要载入MASS包
    library(MASS)
    qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
          method = "rlm")


    # 2.2:x为属性变量,y为连续变量,绘制boxplot
    qplot(color, price/carat, data=diamonds,geom="boxplot")

     



    # 2.3:单变量,直方图
    qplot(carat, data = diamonds, geom = "histogram")

     



    #2.4: 单变量,核密度估计图
    qplot(carat, data = diamonds, geom = "density")

     



    # 按不同颜色绘制的density图
    qplot(carat, data = diamonds, geom = "density",colour=color)

     



    # 2.5 条形图(柱状图)
    #计数,求count(color)
    qplot(color, data = diamonds, geom = "bar")

    #加权,对每个求sum(carat),类似于excel里的数据透视图,按不同的color计算carat的总和
    qplot(color, data = diamonds, geom = "bar", weight = carat)

     




    #2.6. Time-series
    qplot(date, unemploy / pop, data = economics, geom = "line")

     




    #2.7. Path plot
    #如果要查看失业率(unemploy / pop)与平均失业时间(uempmed)之间的关系,一个方法是利用散点图,但是这样做就会导致无法观察到随时间变化的趋势了,path plot利用颜色深浅来代表年份,随着颜色从浅蓝变成深蓝,可以观察到失业率与失业时间的关系的变化趋势。

    #具体实现:先自定义函数year(),将字符串格式的时间转化为年
    year <- function(x) as.POSIXlt(x)$year + 1900

    #画出path plot,颜色按年份由浅到深
    qplot(unemploy / pop, uempmed, data = economics,
          geom = "path", colour = year(date))

  • 相关阅读:
    Linux下服务器开发的必要准备
    send()/ recv() 和 write()/ read()
    listen( ) accept( )
    sock( ) bind( ) connect( )
    SRCNN 卷积神经网络
    猫狗大战
    socket相关函数
    TCP详解
    【Dijkstra priority!】分层图
    树状数组
  • 原文地址:https://www.cnblogs.com/Lambda721/p/6216891.html
Copyright © 2020-2023  润新知