• TensorFlow 使用


    • 搭建你的TensorFlow开发环境

     tensorflow:

    tensorflow 一Current release for CPU-only (recommendedfor beginners) 
    tensorflow-gpu 一Current release with GPU support (Ubuntu and Windows)
    tf-nightly —Nightly build for CPU-only (unstable)
    tf-nightly-gpu —Nightly build with GPU support (unstable, Ubuntu and Windows)

    创建Python虚拟环境

    C:Users67001>pip install virtualenv
    # 创建一个名字为envname的虚拟环境
    D:Program FilesAnaconda3virtual_Env>virtualenv TestEnv Using base prefix 'd:\program files\anaconda3' No LICENSE.txt / LICENSE found in source New python executable in D:Program FilesAnaconda3virtual_EnvTestEnvScriptspython.exe Installing setuptools, pip, wheel... done.

    virtualenv -p python2 envname # 如果安装了多个python版本,如py2和py3,需要指定使用哪个创建虚拟环境
    # 进入虚拟环境文件 D:Program FilesAnaconda3virtual_Env
    >cd TestEnv # 进入相关的启动文件夹 D:Program FilesAnaconda3virtual_EnvTestEnv>cd Scripts # 启动虚拟环境 D:Program FilesAnaconda3virtual_EnvTestEnvScripts>activate (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>

    deactivate # 退出虚拟环境

    在虚拟环境下安装tensorflow:

    (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>pip install tensorflow

     或者:国内安装比较快

    (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade tensorflow

    • “Hello TensorFlow”

    >>> import tensorflow as tf
    # 定义常量操作 hello
    >>> hello = tf.constant("Hello TensorFlow")
    # 创建一个会话
    >>> sess = tf.Session() 2019-07-24 15:31:55.832973: I tensorflow/core/platform/cpu_feature_guard.cc:142]
    Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
    #执行常量操作hello并打印到标准输出
    >>> print(sess.run(hello)) b'Hello TensorFlow'
     
    支持AVX2指令集的CPUs
    • IntelHaswell processor, Q2 2013Haswell E processor, Q3 2014Broadwell processor, Q4 2014Broadwell E processor, Q3 2016Skylake processor, Q3 2015Kaby Lake processor, Q3 2016(ULV mobile)/Q1 2017(desktop/mobile)
    • Skylake-X processor, Q2 2017Coffee Lake processor, Q4 2017Cannon Lake processor, expected in 2018Cascade Lake processor, expected in 2018Ice Lake processor, expected in 2018

    • AMDExcavator processor and newer, Q2 2015Zen processor, Q1 2017Zen+ processor, Q2 2018

    • 在交互式环境中使用 TensorFlow

    pip install jupyter
    
    (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>pip install ipykernel
    
    (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>python -m ipykernel install --user --name=TestEnv
    Installed kernelspec TestEnv in C:Users67001AppDataRoamingjupyterkernels	estenv
    
    (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>jupyter kernelspec list
    Available kernels:
      testenv    C:Users67001AppDataRoamingjupyterkernels	estenv
      python3    d:program filesanaconda3virtual_env	estenvsharejupyterkernelspython3
    (TestEnv) D:Program FilesAnaconda3virtual_EnvTestEnvScripts>jupyter notebook

    多层感知机模型示例

    Neural Network Overview

    nn

    MNIST Dataset Overview

    MNIST图像数据集使用形如[28,28]的二阶数组来表示每张图像,数组中的每个元素对应一个像素点。

    该数据集中的图像都是256阶灰度图,像素值0表示白色(背景),255表示黑色(前景)。

    由于每张图像的尺寸都是28x28像素,为了方便连续存储,我们可以将形如[28,28]

    的二阶数组“摊平”成形如[784]的一阶数组。数组中的784个元素共同组成了一个784维的向量。

    More info: http://yann.lecun.com/exdb/mnist/

    from __future__ import print_function
    
    # 导入 MNIST 数据集
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    import tensorflow as tf
    # 超参数
    learning_rate = 0.1
    num_steps = 500
    batch_size = 128
    display_step = 100
    
    # 神经网络参数
    n_hidden_1 = 256 # 第一层神经元个数
    n_hidden_2 = 256 # 第二层神经元个数
    num_input = 784 # MNIST 输入数据(图像大小: 28*28)
    num_classes = 10 # MNIST 手写体数字类别 (0-9)
    
    # 输入到数据流图中的训练数据
    X = tf.placeholder("float", [None, num_input])
    Y = tf.placeholder("float", [None, num_classes])
    
    
    # 权重和偏置
    weights = {
        'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([num_classes]))
    }
    
    
    
    # 权重和偏置
    weights = {
        'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([num_classes]))
    }
    
    
    
    # 定义神经网络
    def neural_net(x):
        # 第一层隐藏层(256个神经元)
        layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
        # 第二层隐藏层(256个神经元)
        layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
        # 输出层
        out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
        return out_layer
    
    
    
    # 构建模型
    logits = neural_net(X)
    
    # 定义损失函数和优化器
    loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits=logits, labels=Y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op)
    
    # 定义预测准确率
    correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # 初始化所有变量(赋默认值)
    init = tf.global_variables_initializer()
    
    
    
    # 开始训练
    with tf.Session() as sess:
    
        # 执行初始化操作
        sess.run(init)
    
        for step in range(1, num_steps+1):
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # 执行训练操作,包括前向和后向传播
            sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
            if step % display_step == 0 or step == 1:
                # 计算损失值和准确率
                loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
                                                                     Y: batch_y})
                print("Step " + str(step) + ", Minibatch Loss= " + 
                      "{:.4f}".format(loss) + ", Training Accuracy= " + 
                      "{:.3f}".format(acc))
    
        print("Optimization Finished!")
    
        # 计算测试数据的准确率
        print("Testing Accuracy:", 
            sess.run(accuracy, feed_dict={X: mnist.test.images,
                                          Y: mnist.test.labels}))

     

    • 在容器中使用 TensorFlow

    VM vs Docker Container
     
     
     
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    软件过程管理读书笔记02
    交叉验证
    oracle两张表数据匹配,Oracle-left join两表关联只取B表匹配到的第一条记录
    oracle批量新增
    oracle聚合函数XMLAGG用法简介
    form表单导致url连接重定向问题处理
    请求200,返回没内容,360可以看到response内容(待看),nginx返回内容被截取
    jsonp请求返回前面带有个null
    oracle日期转换的一些坑
    Java中将List<String>转化为以,分割的字符串或相反(转载)
  • 原文地址:https://www.cnblogs.com/LXL616/p/11238262.html
Copyright © 2020-2023  润新知