从左到右扫一遍,考虑什么时候会和之前形成同一幢房子从而不用统计
显然是当前的高度和之前某个点高度相同,并且它们之间没有更矮的建筑
考虑用一个单调栈维护一个单调上升的房子轮廓,然后对于扫到的每一个高度,看看栈里有没有相同的高度就行了
但是我比较傻逼,没想到,所以用 $set$ 去维护单调栈就可以维护的东西...
每个位置进出 $set$ 一次,复杂度 $O(n log n)$
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<set> using namespace std; inline int read() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); } return x*f; } const int N=5e5+7; int n,m,ans; set <int> S; set <int>::iterator it,pit; int main() { n=read(),m=read(); int x,y; S.insert(0); for(int i=1;i<=n;i++) { x=read(),y=read(); for(it=S.upper_bound(y);it!=S.end();it=S.upper_bound(y)) S.erase(it); if(S.find(y)==S.end()) { ans++; S.insert(y); } } printf("%d ",ans); return 0; }