• 【数论-数位统计】UVa 11076


    Add Again
    Input: Standard Input

    Output: Standard Output

    Summation of sequence of integers is always a common problem in Computer Science. Rather than computing blindly, some intelligent techniques make the task simpler. Here you have to find the summation of a sequence of integers. The sequence is an interesting one and it is the all possible permutations of a given set of digits. For example, if the digits are <1 2 3>, then six possible permutations are <123>, <132>, <213>, <231>, <312>, <321> and the sum of them is 1332.

    Input

    Each input set will start with a positive integer N (1≤N≤12). The next line will contain N decimal digits. Input will be terminated by N=0. There will be at most 20000 test set.

    Output

    For each test set, there should be a one line output containing the summation. The value will fit in 64-bit unsigned integer.

    Sample Input         Output for Sample Input

    3

    1 2 3

    3

    1 1 2

    0

     

    1332

    444

     

     

    题意:给你n个数字(0~9,1<=n<=12),问这些数字构成的所有不重复排列的和。

    分析:举个例子

    含重复数字时能构成的所有不重复排列的个数为:(n!)/((n1!)*(n2!)*...*(nn!)),其中ni指数字i出现的次数。

    又因为每个数字在每一位出现的概率时等可能的。

    比如1 1 2,所能构成的所有情况为

    1 2 3

    1 3 2

    2 1 3

    2 3 1

    3 1 2

    3 2 1

    而1、2、3出现在个、十、百位的次数时一样的,即6/3;

    则每个数字在每一位出现的次数为 [(n!)/((n1!)*(n2!)*...*(nn!))]/n;(含重复数字时同样适用)

    简化加法,即每个数字在每一位均出现1次时这个数字的和为 x*1...1 (n个1)

    则n个数字在每一位出现times次,即为所求答案。ans = (a1+a2+...+an)*(1...1)*[(n!)/((n1!)*(n2!)*...*(nn!))]/n;

    切忌:[(n!)/((n1!)*(n2!)*...*(nn!))]/n*(a1+a2+...+an)*(1...1)这样表达时错误的,当n个数字相同时,[(n!)/((n1!)*(n2!)*...*(nn!))] = 1, 1/n会得到0,所以应先乘再除;

    【代码】:

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 #include<cstring>
     5 using namespace std;
     6 typedef unsigned long long ull;
     7 const int maxn = 15;
     8 int x, a[maxn], num[maxn];
     9 ull C[maxn];
    10 const ull basic[] =
    11 {
    12     1, 11, 111, 1111, 11111, 111111, 1111111, 11111111,
    13     111111111, 1111111111, 11111111111, 111111111111
    14 };
    15 void init()
    16 {
    17     C[0] = C[1] = 1;
    18     for(int i = 2; i <= 12; i++)
    19     {
    20         C[i] = C[i-1]*i;
    21     }
    22 }
    23 
    24 int main()
    25 {
    26     init();
    27     int n;
    28     while(scanf("%d", &n) && n)
    29     {
    30         memset(num, 0, sizeof(num));
    31         ull ans = 0;
    32         for(int i = 0; i < n; i++)
    33         {
    34             scanf("%d", &x);
    35             ans += x;
    36             num[x]++;
    37         }
    38         ull times = C[n];
    39         for(int i = 0; i < 10; i++)
    40         {
    41             times /= C[num[i]];
    42         }
    43         ans = ans*times*basic[n-1]/n;
    44         cout << ans << endl;
    45     }
    46     return 0;
    47 }
  • 相关阅读:
    链接的思考
    反向传播算法为什么要“反向”
    浅说机器学习理论
    体验一下5分钟快速迁移mysql近亿数据量大表的速度!!!
    (MHA+MYSQL-5.7增强半同步)高可用架构设计与实现
    MySQL-开发规范升级版
    Mysql 优化建议
    Percona XtraDB Cluster(PXC)-高可用架构设计说明
    企业级-Mysql双主互备高可用负载均衡架构(基于GTID主从复制模式)(原创)
    记一次测试环境下PXC集群问题《经验总结》
  • 原文地址:https://www.cnblogs.com/LLGemini/p/4326570.html
Copyright © 2020-2023  润新知