• Eight(bfs+全排列的哈希函数)


    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 22207   Accepted: 9846   Special Judge

    Description

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 
     1  2  3  4 
    
    5 6 7 8
    9 10 11 12
    13 14 15 x

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
     1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
    
    5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
    9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
    13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
    r-> d-> r->

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
    arrangement. 

    Input

    You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 
     1  2  3 
    
    x 4 6
    7 5 8

    is described by this list: 

    1 2 3 x 4 6 7 5 8

    Output

    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

    Sample Input

     2  3  4  1  5  x  7  6  8 

    Sample Output

    ullddrurdllurdruldr

    题意:这是一个8数码问题,听着好高端的样子;就是给你一个3*3的矩阵,包括1~8和x;例
    1  2  3 
    
    x 4 6
    7 5 8 问最少需要变换x几步成为

    1 2 3
    4 5 6
    7 8 x 的形式;

    这题的关键是找到一个哈希函数,使得矩阵形成的排列与一个自然数一一对应,这里采用的是全排列的哈希函数,另一个就是BFS加打印路径了;

      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<queue>
      4 #include<iostream>
      5 using namespace std;
      6 
      7 const int maxn = 362881;//根据全排列的哈希函数,n+1个数的排列可以对应n个数的多进制形式,这里九个数对应多进制的最大值为9!-1;
      8 int factorial[9] = {1,1,2,6,24,120,720,5040,40320};
      9 int pow[9] = {100000000,10000000,1000000,100000,10000,1000,100,10,1};
     10 int head,tail;
     11 bool vis[maxn];
     12 
     13 struct node
     14 {
     15     char status;
     16     int id,num,pre;
     17 }que[maxn];
     18 
     19 int hash(int num)//全排列的哈希函数
     20 {
     21     int a[10],key,i,j,c;
     22     for(i = 0; i < 9; i++)
     23     {
     24         a[i] = num%10;//a数组倒着存的num,所以求逆序数的时候条件是a[j]<a[i];
     25         num = num/10;
     26     }
     27     key = 0;
     28     for(i = 1; i < 9; i++)
     29     {
     30         for(j = 0,c = 0; j < i; j++)
     31         {
     32             if(a[j] < a[i])
     33                 c++;
     34         }
     35         key += c*factorial[i];
     36     }
     37     return key;
     38 }
     39 
     40 void change(int num,int a,int b,char status)//a位置上的数和b位置上的数互换;
     41 {
     42     int n1,n2;
     43     n1 = num/pow[a]%10;
     44     n2 = num/pow[b]%10;
     45     num = num - (n1-n2)*pow[a] + (n1-n2)*pow[b];
     46     int key = hash(num);
     47     if(!vis[key])
     48     {
     49         vis[key] = true;
     50         que[tail].num = num;
     51         que[tail].id = b;
     52         que[tail].status = status;
     53         que[tail++].pre = head;
     54     }
     55 }
     56 
     57 //打印路径
     58 void print(int head)
     59 {
     60     char s[100];
     61     int c = 0;
     62     while(que[head].status != 'k')
     63     {
     64         s[c++] = que[head].status;
     65         head = que[head].pre;
     66     }
     67     s[c] = '';
     68     for(int i = c-1; i >= 0; i--)
     69     {
     70         printf("%c",s[i]);
     71     }
     72     printf("
    ");
     73 }
     74 
     75 int main()
     76 {
     77     char c;
     78     int num,id,t;
     79 
     80     num = 0;
     81     for(int i = 0; i < 9; i++)
     82     {
     83         cin>>c;
     84         if(c == 'x')
     85         {
     86             t = 9;
     87             id = i;
     88         }
     89         else t = c-'0';
     90         num = 10*num+t;
     91     }
     92     bool flag = false;
     93     memset(vis,false,sizeof(vis));
     94 
     95     head = 0;
     96     tail = 1;
     97     que[0].id = id;
     98     que[0].num = num;
     99     que[0].status = 'k';
    100 
    101     while(head < tail)
    102     {
    103         num = que[head].num;
    104         id = que[head].id;
    105         if(num == 123456789)
    106         {
    107             flag = true;
    108             break;
    109         }
    110         if(id > 2)
    111             change(num,id,id-3,'u');
    112 
    113         if(id < 6)
    114             change(num,id,id+3,'d');
    115 
    116         if(id%3 != 0)
    117             change(num,id,id-1,'l');
    118         if(id%3 != 2)
    119             change(num,id,id+1,'r');
    120         head++;
    121 
    122     }
    123     if(flag) print(head);
    124     else printf("unsolvable
    ");
    125     return 0;
    126 }
    View Code
  • 相关阅读:
    ZOJ-3230-Solving the Problems
    zoj-3410-Layton's Escape
    cin输入超过文本末尾
    sizeof('a')
    WPF TranslatePoint/TransformToVisual 总返回零
    Lock-free multi-threading
    c++0X 用字符串调用函数
    Vim 的c++语法补齐
    Reentrancy VS Thread safe
    内存屏障
  • 原文地址:https://www.cnblogs.com/LK1994/p/3383060.html
Copyright © 2020-2023  润新知