• A Beautiful Meadow



    Tom's Meadow

    Tom has a meadow in his garden. He divides it into N * M squares. Initially all the squares were covered with grass. He mowed down the grass on some of the squares and thinks the meadow is beautiful if and only if

    1. Not all squares are covered with grass.
    2. No two mowed squares are adjacent.

    Two squares are adjacent if they share an edge. Here comes the problem: Is Tom's meadow beautiful now?

    Input

    The input contains multiple test cases!

    Each test case starts with a line containing two integers N, M (1 <= N, M <= 10) separated by a space. There follows the description of Tom's Meadow. There're N lines each consisting of M integers separated by a space. 0(zero) means the corresponding position of the meadow is mowed and 1(one) means the square is covered by grass.

    A line with N = 0 and M = 0 signals the end of the input, which should not be processed

    Output

    One line for each test case.

    Output "Yes" (without quotations) if the meadow is beautiful, otherwise "No"(without quotations).

    Sample Input

    2 2
    1 0
    0 1
    2 2
    1 1
    0 0
    2 3
    1 1 1
    1 1 1
    0 0

    Sample Output

    Yes
    No
    No

     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<string.h>
     4 int map[20][20],vis[20][20];
     5 int x[]={0,1,-1,0};
     6 int y[]={1,0,0,-1};
     7 int n,m;
     8 int dfs(int i,int j)
     9 {
    10     int k,flag;
    11     int tx,ty;
    12     vis[i][j]=1;
    13     flag=0;
    14     for(i=1;i<=n;i++)
    15         for(j=1;j<=m;j++)
    16 
    17     {
    18             for(k=0;k<4;k++)
    19            {
    20             tx=i+x[k];
    21             ty=j+y[k];
    22             if(tx>=1&&tx<=n&&ty>=1&&ty<=m&&!vis[tx][ty]&&map[tx][ty]==map[i][j])
    23             {
    24                 if(map[i][j]==0)
    25                 {
    26                     flag=1;
    27                     break;
    28                 }
    29             }
    30 
    31             }
    32     }
    33     return flag;
    34 }
    35 int main ()
    36 {
    37     int sum,flag,i,j;
    38     while(scanf("%d %d",&n,&m)!=EOF)
    39     {
    40         if(n==0&&m==0) break;
    41         sum=0;
    42         memset(vis,0,sizeof(vis));
    43         for(i=1;i<=n;i++)
    44             for(j=1;j<=m;j++)
    45                 scanf("%d",&map[i][j]);
    46         for(i=1;i<=n;i++)
    47         {
    48             for(j=1;j<=m;j++)
    49             {
    50                 if(map[i][j]==1)
    51                    sum++;
    52             }
    53         }
    54         if(sum==n*m)
    55         {
    56             printf("No\n");
    57             continue;
    58         }
    59         else
    60         {
    61             flag=dfs(1,1);
    62             if(flag) printf("No\n");
    63             else printf("Yes\n");
    64         }
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    数据预处理--数据清洗
    数据运营(一)基本讲解概念及运营方式.
    基于skearn-learn 框架 的线性回归
    手写线性回归算法demo
    数据分析算法--线性回归算法讲解(2)
    数据分析算法--线性回归算法讲解
    数据监督与非监督
    numpy的常用函数以及常规操作
    数据分析--基础numpy(一)
    互斥锁,自旋锁,读写锁与原子操作
  • 原文地址:https://www.cnblogs.com/LK1994/p/2990609.html
Copyright © 2020-2023  润新知