poj3468 A Simple Problem with Integers
( m - ( m >> 1 ) )这里跪了几发。。 - 的优先级大于 >>
1 #include<iostream> 2 #include<cstring> 3 #include<algorithm> 4 #include<cstdio> 5 #include<string> 6 #include<queue> 7 #include<cmath> 8 #include<vector> 9 10 using namespace std; 11 12 #define mnx 104000 13 #define ll long long 14 #define mod 1000000007 15 #define inf 0x3f3f3f3f 16 #define lson l, m, rt << 1 17 #define rson m+1, r, rt << 1 | 1 18 19 ll sum[mnx<<2], col[mnx<<2]; 20 int n; 21 void pushup( int rt ){ 22 sum[rt] = sum[rt<<1] + sum[rt<<1|1]; 23 } 24 void pushdown( int rt, int m ){ 25 if( col[rt] ){ 26 col[rt<<1] += col[rt]; 27 col[rt<<1|1] += col[rt]; 28 sum[rt<<1|1] += ( m >> 1 ) * col[rt] ; 29 sum[rt<<1] += ( m - ( m >> 1 ) ) * col[rt] ; 30 col[rt] = 0; 31 } 32 } 33 void build( int l, int r, int rt ){ 34 col[rt] = 0; 35 if( l == r ){ 36 scanf( "%I64d", &sum[rt] ); 37 return; 38 } 39 int m = ( l + r ) >> 1; 40 build( lson ); 41 build( rson ); 42 pushup( rt ); 43 } 44 void update( int L, int R, int v, int l, int r, int rt ){ 45 if( L <= l && R >= r ){ 46 sum[rt] += ( r - l + 1 ) * (ll)v; 47 col[rt] += v; 48 return ; 49 } 50 pushdown( rt, r - l + 1 ); 51 int m = ( l + r ) >> 1; 52 if( L <= m ) update( L, R, v, lson ); 53 if( R > m ) update( L, R, v, rson ); 54 pushup( rt ); 55 } 56 ll find( int L, int R, int l, int r, int rt ){ 57 ll ret = 0; 58 if( L <= l && R >= r ){ 59 return sum[rt]; 60 } 61 pushdown( rt, r - l + 1 ); 62 int m = ( l + r ) >> 1; 63 if( L <= m ) ret += find( L, R, lson ); 64 if( R > m ) ret += find( L, R, rson ); 65 //pushup( rt ); 66 return ret; 67 } 68 int main(){ 69 int q; 70 while( scanf( "%d %d", &n, &q ) != EOF ){ 71 build( 1, n, 1 ); 72 getchar(); 73 while( q-- ){ 74 char c; 75 int a, b, v; 76 cin >> c; 77 if( c == 'Q' ){ 78 scanf( "%d %d", &a, &b ); 79 printf( "%I64d ", find( a, b, 1, n, 1 ) ); 80 } 81 else{ 82 scanf( "%d %d %d", &a, &b, &v ); 83 update( a, b, v, 1, n, 1 ); 84 } 85 } 86 } 87 return 0; 88 }
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了。。
1 #include<iostream> 2 #include<cstring> 3 #include<algorithm> 4 #include<cstdio> 5 #include<string> 6 #include<queue> 7 #include<cmath> 8 #include<vector> 9 10 using namespace std; 11 12 #define mnx 10010 13 #define ll long long 14 #define mod 1000000007 15 #define inf 0x3f3f3f3f 16 #define lson l, m, rt << 1 17 #define rson m+1, r, rt << 1 | 1 18 19 int lx[mnx], rx[mnx], sum[mnx<<2], col[mnx<<4], n, ans; 20 bool vis[mnx<<2]; 21 void pushdown( int rt ){ 22 if( col[rt] ){ 23 col[rt<<1] = col[rt<<1|1] = col[rt]; 24 col[rt] = 0; 25 } 26 } 27 void update( int L, int R, int v, int l, int r, int rt ){ 28 if( L <= l && R >= r ){ 29 col[rt] = v; 30 return ; 31 } 32 pushdown( rt ); 33 int m = ( l + r ) >> 1; 34 if( L <= m ) update( L, R, v, lson ); 35 if( R > m ) update( L, R, v, rson ); 36 } 37 38 int bin_search( int goal, int n ){ 39 int l = 0, r = n - 1; 40 while( l < r ){ 41 int m = ( l + r ) >> 1; 42 if( sum[m] < goal ){ 43 l = m + 1; 44 } 45 else r = m; 46 } 47 return l; 48 } 49 void find( int l, int r, int rt ){ 50 if( l == r ){ 51 if( col[rt] == 0 ) return ; 52 if( !vis[col[rt]] ) ans++; 53 vis[col[rt]] = 1; 54 return ; 55 } 56 pushdown( rt ); 57 int m = ( l + r ) >> 1; 58 find( lson ); 59 find( rson ); 60 } 61 int main(){ 62 int cas; 63 scanf( "%d", &cas ); 64 while( cas-- ){ 65 memset( col, 0, sizeof(col) ); 66 memset( vis, 0, sizeof(vis) ); 67 int cnt = 0; 68 scanf( "%d", &n ); 69 for( int i = 0; i < n; i++ ){ 70 scanf( "%d %d", &lx[i], &rx[i] ); 71 sum[cnt++] = lx[i]; 72 sum[cnt++] = rx[i]; 73 } 74 sort( sum, sum + cnt ); 75 cnt = unique( sum, sum + cnt ) - sum; 76 int kk = cnt; 77 for( int i = 1; i < cnt; i++ ){ 78 if( sum[i] - sum[i-1] != 1 ){ 79 sum[kk++] = sum[i-1] + 1; 80 } 81 } 82 sort( sum, sum + kk ); 83 for( int i = 0; i < n; i++ ){ 84 int l = bin_search( lx[i], kk ) + 1; 85 int r = bin_search( rx[i], kk ) + 1; 86 //cout<<l<<" "<<r<<endl; 87 update( l, r, i+1, 1, kk, 1 ); 88 } 89 ans = 0; 90 find( 1, kk, 1 ); 91 printf( "%d ", ans ); 92 } 93 return 0; 94 }
做的好恶心啊,只好边看代码边做。。
题意:区间操作,交,并,补等
思路:
我们一个一个操作来分析:(用0和1表示是否包含区间,-1表示该区间内既有包含又有不包含)
U:把区间[l,r]覆盖成1
I:把[-∞,l)(r,∞]覆盖成0
D:把区间[l,r]覆盖成0
C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
S:[l,r]区间0/1互换
成段覆盖的操作很简单,比较特殊的就是区间0/1互换这个操作,我们可以称之为异或操作
很明显我们可以知道这个性质:当一个区间被覆盖后,不管之前有没有异或标记都没有意义了
所以当一个节点得到覆盖标记时把异或标记清空
而当一个节点得到异或标记的时候,先判断覆盖标记,如果是0或1,直接改变一下覆盖标记,不然的话改变异或标记
开区间闭区间只要数字乘以2就可以处理(偶数表示端点,奇数表示两端点间的区间)
线段树功能:update:成段替换,区间异或 query:简单hash
1 #include<iostream> 2 #include<cstring> 3 #include<algorithm> 4 #include<cstdio> 5 #include<string> 6 #include<queue> 7 #include<cmath> 8 #include<vector> 9 10 using namespace std; 11 12 #define mnx 131072 13 #define ll long long 14 #define mod 1000000007 15 #define inf 0x3f3f3f3f 16 #define lson l, m, rt << 1 17 #define rson m+1, r, rt << 1 | 1 18 19 const int n = 131072; 20 int cover[mnx<<2], Xor[mnx<<2]; 21 bool vis[mnx+1]; 22 void Fxor( int rt ){ 23 if( cover[rt] != -1 ) cover[rt] ^= 1; 24 else Xor[rt] ^= 1; 25 } 26 void pushdown( int rt ){ 27 if( cover[rt] != -1 ){ 28 cover[rt<<1] = cover[rt<<1|1] = cover[rt]; 29 Xor[rt<<1] = Xor[rt<<1|1] = 0; 30 cover[rt] = -1; 31 } 32 if( Xor[rt] ){ 33 Fxor( rt<<1 ); 34 Fxor( rt<<1|1 ); 35 Xor[rt] = 0; 36 } 37 } 38 void update( int L, int R, char c, int l, int r, int rt ){ 39 if( L <= l && R >= r ){ 40 if( c == 'U' ){ 41 cover[rt] = 1; 42 Xor[rt] = 0; 43 } 44 else if( c == 'D' ){ 45 cover[rt] = 0; 46 Xor[rt] = 0; 47 } 48 else if( c == 'S' || c == 'C' ){ 49 Fxor( rt ); 50 } 51 return ; 52 } 53 pushdown( rt ); 54 int m = ( l + r ) >> 1; 55 if( L <= m ) update( L, R, c, lson ); 56 else if( c == 'C' || c == 'I' ){ 57 cover[rt<<1] = Xor[rt<<1] = 0; 58 } 59 if( R > m ) update( L, R, c, rson ); 60 else if( c == 'C' || c == 'I' ){ 61 cover[rt<<1|1] = Xor[rt<<1|1] = 0; 62 } 63 } 64 void find( int l, int r, int rt ){ 65 if( cover[rt] == 1 ){ 66 for( int i = l; i <= r; i++ ){ 67 vis[i] = 1; 68 } 69 return ; 70 } 71 if( cover[rt] == 0 ) return; 72 pushdown( rt ); 73 int m = ( l + r ) >> 1; 74 find( lson ); 75 find( rson ); 76 } 77 int main(){ 78 char op, a, b; 79 int l, r; 80 while( scanf( "%c %c%d,%d%c ", &op, &a, &l, &r, &b ) != EOF ){ 81 l <<= 1, r <<= 1; 82 if( a == '(' ) l++; 83 if( b == ')' ) r--; 84 if( l > r ){ 85 if( op == 'C' || op == 'I' ){ 86 cover[1] = Xor[1] = 0; 87 } 88 } 89 else update( l, r, op, 0, n, 1 ); 90 } 91 find( 0, n, 1 ); 92 l = -1; 93 bool flag = 0; 94 for( int i = 0; i < n; i++ ){ 95 if( vis[i] ){ 96 if( l == -1 ){ 97 l = i; 98 } 99 r = i; 100 } 101 else{ 102 if( l == -1 ) continue; 103 if( flag ) printf( " " ); 104 flag = 1; 105 printf( "%c%d,%d%c", l&1 ? '(' : '[', l>>1, (r+1)>>1, r&1 ? ')' : ']' ); 106 l = -1; 107 } 108 } 109 if( !flag ) printf( "empty set" ); 110 printf( " " ); 111 return 0; 112 }
poj1436 Horizontally Visible Segments
题目大意是,给出了很多条平行于y轴的线段,然后定义,两条线段能互相‘看见’的条件是,两条线段能由一条水平线连接,且这条水平线不能跟其他的所有线段有交点。
而题目要求的是,3个线段能互相看见,这个条件下有多少组不同的。
线段树区间覆盖,先按照x的坐标排序,然后每次覆盖前询问。。还有就是区间[1, 2] [3, 4]没有把区间[1,4]全部覆盖,所以线段树要开2倍,把输入的区间做乘2处理
1 #include<iostream> 2 #include<cstring> 3 #include<algorithm> 4 #include<cstdio> 5 #include<string> 6 #include<queue> 7 #include<cmath> 8 #include<vector> 9 10 using namespace std; 11 12 #define mnx 8005 13 #define ll long long 14 #define mod 1000000007 15 #define inf 0x3f3f3f3f 16 #define lson l, m, rt << 1 17 #define rson m+1, r, rt << 1 | 1 18 19 const int N = mnx<<1; 20 int cover[mnx<<3], used[mnx], n; 21 struct seg{ 22 int l, r, x; 23 bool operator < ( const seg & b ) const{ 24 return x < b.x; 25 } 26 }p[mnx]; 27 vector<int> g[mnx]; 28 void init(){ 29 memset( used, 0, sizeof(used) ); 30 memset( cover, 0, sizeof(cover) ); 31 } 32 void pushdown( int rt ){ 33 if( cover[rt] ){ 34 cover[rt<<1] = cover[rt<<1|1] = cover[rt]; 35 cover[rt] = 0; 36 } 37 } 38 void update( int L, int R, int v, int l, int r, int rt ){ 39 if( L <= l && R >= r ){ 40 cover[rt] = v; 41 return ; 42 } 43 pushdown( rt ); 44 int m = ( l + r ) >> 1; 45 if( L <= m ) update( L, R, v, lson ); 46 if( R > m ) update( L, R, v, rson ); 47 } 48 void query( int L, int R, int v, int l, int r, int rt ){ 49 if( L <= l && R >= r ){ 50 if( cover[rt] ){ 51 if( used[cover[rt]] != v ){ 52 used[cover[rt]] = v; 53 g[cover[rt]].push_back( v ); 54 } 55 return ; 56 } 57 } 58 if( l == r ) return ; 59 pushdown( rt ); 60 int m = ( l + r ) >> 1; 61 if( L <= m ) query( L, R, v, lson ); 62 if( R > m ) query( L, R, v, rson ); 63 } 64 int main(){ 65 int cas; 66 scanf( "%d", &cas ); 67 while( cas-- ){ 68 init(); 69 scanf( "%d", &n ); 70 for( int i = 1; i <= n; i++ ){ 71 scanf( "%d %d %d", &p[i].l, &p[i].r, &p[i].x ); 72 p[i].l <<= 1, p[i].r <<= 1; 73 } 74 sort( p + 1, p + n + 1 ); 75 for( int i = 1; i <= n; i++ ){ 76 query( p[i].l, p[i].r, i, 0, N, 1 ); 77 update( p[i].l, p[i].r, i, 0, N, 1 ); 78 } 79 int ans = 0; 80 for( int i = 1; i <= n; i++ ){ 81 int len1 = g[i].size(); 82 for( int j = 0; j < len1; j++ ){ 83 int kk = g[i][j], len2 = g[kk].size(); 84 for( int k = j + 1; k < len1; k++ ){ 85 for( int m = 0; m < len2; m++ ){ 86 if( g[i][k] == g[kk][m] ) ans++; 87 } 88 } 89 } 90 g[i].clear(); 91 } 92 printf( "%d ", ans ); 93 } 94 return 0; 95 }
线段树加几何。。( c++过了,g++超时 ) 感觉有些时候g++快点,有些时候g++很慢,搞不懂有什么差别╮(╯▽╰)╭
题意:给你一个n节组成的起重机,而每两节直接可以旋转,一开始每节都在y轴上,现在对于每次旋转第i与i+1的角度,求末端( 第N条线段的端点 )的坐标。。。
线段树的节点保存三个信息: 向量的坐标( vx, vy ) 和 向量旋转的角度( ang )。。
分析: 1.向量(x,y)则,向量 逆时针 旋转a弧度 后的向量为(cos a *x-sin a*y,sin a*x+cos a*y)
2.向量的和刚好指向这些向量头尾相连后所指向的地方,也就是把每条线段看做一个向量,那么这项向量的和正好指向末端的坐标
3.旋转第i与i+1的角度是,i+1及其上的所有向量都旋转了同样的角度
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<string> 5 #include<queue> 6 #include<cmath> 7 #include<vector> 8 9 using namespace std; 10 11 #define mnx 50005 12 #define ll long long 13 #define mod 1000000007 14 #define inf 0x3f3f3f3f 15 #define eps 1e-8 16 #define Pi acos(-1.0); 17 #define lson l, m, rt << 1 18 #define rson m+1, r, rt << 1 | 1 19 20 double vx[mnx], vy[mnx], ang[mnx], degree[mnx]; 21 void rotate( int rt, double rad ){ 22 rad = ( rad / 180.0 ) * Pi; 23 double x = vx[rt] * cos( rad ) - vy[rt] * sin( rad ); 24 double y = vy[rt] * cos( rad ) + vx[rt] * sin( rad ); 25 vx[rt] = x, vy[rt] = y; 26 } 27 void pushup( int rt ){ 28 vx[rt] = vx[rt<<1] + vx[rt<<1|1]; 29 vy[rt] = vy[rt<<1] + vy[rt<<1|1]; 30 } 31 void pushdown( int rt ){ 32 if( fabs( ang[rt] ) > eps ){ 33 rotate( rt<<1, ang[rt] ); 34 rotate( rt<<1|1, ang[rt] ); 35 ang[rt<<1] += ang[rt]; 36 ang[rt<<1|1] += ang[rt]; 37 ang[rt] = 0; 38 } 39 } 40 void build( int l, int r, int rt ){ 41 ang[rt] = 0; 42 if( l == r ){ 43 scanf( "%lf", &vy[rt] ); 44 vx[rt] = 0; 45 return ; 46 } 47 int m = ( l + r ) >> 1; 48 build( lson ); 49 build( rson ); 50 pushup( rt ); 51 } 52 void update( int s, double a, int l, int r, int rt ){ 53 if( s < l ){ 54 rotate( rt, a ); 55 ang[rt] += a; 56 return ; 57 } 58 pushdown( rt ); 59 int m = ( l + r ) >> 1; 60 if( s < m ) update( s, a, lson ); 61 update( s, a, rson ); 62 pushup( rt ); 63 } 64 int main(){ 65 int n, q, flag = 0; 66 while( scanf( "%d %d", &n, &q ) != EOF ){ 67 if( flag ) puts( "" ); 68 flag = 1; 69 build( 1, n, 1 ); 70 for( int i = 0; i <= n+2; i++ ) degree[i] = 180.0; 71 while( q-- ){ 72 int s; double a; 73 scanf( "%d %lf", &s, &a ); 74 update( s, a - degree[s+1], 1, n, 1 ); 75 degree[s+1] = a; 76 printf( "%.2lf %.2lf ", vx[1], vy[1] ); 77 } 78 } 79 return 0; 80 }
中文题,不解释。。线段树区间更新,离散化。。找了好久的错,发现query里面还要sum[rt] = sum[rt<<1] + sum[rt<<1|1];因为我query的时候也改了sum[rt]的值,所以要向上更新,跪了好久。。其实还是逗比了,我应该写一个区间更新的update的,在query之后,然后对[l,r]进行区间更新的,然后再对[l,l]进行单点更新,就不会wa这么久了
做法: 先按照x坐标又大到小排序,然后从右到左边查边插入线段树。。(这道题还可以用单调栈)
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<algorithm> 5 #include<string> 6 #include<cmath> 7 #include<map> 8 #include<queue> 9 10 using namespace std; 11 12 #define mnx 200005 13 #define Pi acos(-1.0) 14 #define ull unsigned long long 15 #define ll long long 16 #define inf 0x3f3f3f3f 17 #define eps 1e-8 18 #define MP make_pair 19 #define lson l, m, rt << 1 20 #define rson m+1, r, rt << 1 | 1 21 #define mod 2333333 22 23 const int N = mnx - 2; 24 int ch[mnx<<2], sum[mnx<<2], col[mnx<<2], ans[mnx]; 25 struct domino{ 26 int x, h, id; 27 bool operator < ( const domino & b ) const{ 28 return x > b.x; 29 } 30 }p[mnx]; 31 int bin_search( int key, int n ){ 32 return lower_bound( ch + 1, ch + n + 1, key ) - ch; 33 } 34 void pushdown( int rt ){ 35 if( col[rt] ){ 36 sum[rt<<1] = sum[rt<<1|1] = 0; 37 col[rt<<1] = col[rt<<1|1] = 1; 38 col[rt] = 0; 39 } 40 } 41 void update( int k, int v, int l, int r, int rt ){ 42 if( l == r ){ 43 sum[rt] = v; 44 return ; 45 } 46 pushdown( rt ); 47 int m = ( l + r ) >> 1; 48 if( k <= m ) update( k, v, lson ); 49 else update( k, v, rson ); 50 sum[rt] = sum[rt<<1] + sum[rt<<1|1]; 51 } 52 int query( int L, int R, int l, int r, int rt ){ 53 int ret = 0; 54 if( L <= l && R >= r ){ 55 col[rt] = 1, ret = sum[rt], sum[rt] = 0; 56 return ret; 57 } 58 pushdown( rt ); 59 int m = ( l + r ) >> 1; 60 if( L <= m ) ret += query( L, R, lson ); 61 if( R > m ) ret += query( L, R, rson ); 62 sum[rt] = sum[rt<<1] + sum[rt<<1|1]; 63 return ret; 64 } 65 int main(){ 66 int n; 67 while( scanf( "%d", &n ) != EOF ){ 68 memset( col, 0, sizeof(col) ); 69 memset( sum, 0, sizeof(sum) ); 70 int l, r, cnt = 1; 71 for( int i = 1; i <= n; i++ ){ 72 scanf( "%d %d", &l, &r ); 73 p[i].x = l, p[i].h = r, p[i].id = i; 74 ch[cnt++] = l, ch[cnt++] = r + l - 1; 75 } 76 sort( ch + 1, ch + cnt ); 77 cnt = unique( ch + 1, ch + cnt ) - ch - 1; 78 sort( p + 1, p + n + 1 ); 79 for( int i = 1; i <= n; i++ ){ 80 l = bin_search( p[i].x, cnt ); 81 r = bin_search( p[i].h + p[i].x - 1, cnt ); 82 ans[p[i].id] = query( l, r, 1, N, 1 ) + 1; 83 update( l, ans[p[i].id], 1, N, 1 ); 84 } 85 for( int i = 1; i <= n; i++ ){ 86 printf( "%d%c", ans[i], i == n ? ' ' : ' ' ); 87 } 88 } 89 return 0; 90 }
hdu 4973 A simple simulation problem
尼玛,跪了一个晚上,终于检查出错误了。。下午的做法想线段树每个节点记录三个值l, r, sum,最后写了两个小时,没有过,哎。。晚上听小坤子讲了他的做法,敲出来了,然后一直不能ac,最后还是他帮我找出错误。。敲代码还是细心细心啊。。
做法:sum[]维护的是节点内数的个数,cnt[]维护的是这个节点内,不同数的个数的最大值,col[]记录这个区间内的数复制了多少次。。输入要更新和要询问的区间[l, r],先查找 l 在哪个节点(假设为L)上, r 在哪个节点(假设为R)上,再更新或询问( L + 1, R + 1 )这个区间
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<string> 5 #include<queue> 6 #include<algorithm> 7 #include<cmath> 8 #include<vector> 9 10 using namespace std; 11 12 #define mnx 50050 13 #define ll long long 14 #define mod 1000000007 15 #define inf 0x3f3f3f3f 16 #define eps 1e-10 17 #define Pi acos(-1.0); 18 #define lson l, m, rt << 1 19 #define rson m+1, r, rt << 1 | 1 20 21 ll sum[mnx<<2], ls, rs, cnt[mnx<<2]; 22 int col[mnx<<2]; 23 void pushup( int rt ){ 24 sum[rt] = sum[rt<<1] + sum[rt<<1|1]; 25 cnt[rt] = max( cnt[rt<<1], cnt[rt<<1|1] ); 26 } 27 void pushdown( int rt ){ 28 if( col[rt] ){ 29 col[rt<<1] += col[rt]; 30 col[rt<<1|1] += col[rt]; 31 int k = col[rt]; 32 sum[rt<<1] <<= k; 33 sum[rt<<1|1] <<= k; 34 cnt[rt<<1] <<= k; 35 cnt[rt<<1|1] <<= k; 36 col[rt] = 0; 37 } 38 } 39 void build( int l, int r, int rt ){ 40 col[rt] = 0; 41 if( l == r ){ 42 sum[rt] = 1, cnt[rt] = 1; 43 return ; 44 } 45 int m = ( l + r ) >> 1; 46 build( lson ); build( rson ); 47 pushup( rt ); 48 } 49 int find( int t, int x, int l, int r, int rt ){ 50 if( l == r ){ 51 if( t == 0 ){ 52 rs = sum[rt] - x + 1; 53 } 54 if( t == 1 ){ 55 ls = x; 56 } 57 return l; 58 } 59 pushdown( rt ); 60 int m = ( l + r ) >> 1; 61 if( x <= sum[rt<<1] ) return find( t, x, lson ); 62 else return find( t, x - sum[rt<<1], rson ); 63 } 64 void update1( int x, int v, int l, int r, int rt ){ 65 if( l == r ){ 66 sum[rt] += v; 67 cnt[rt] += v; 68 return ; 69 } 70 pushdown( rt ); 71 int m = ( l + r ) >> 1; 72 if( x <= m ) update1( x, v, lson ); 73 else update1( x, v, rson ); 74 pushup( rt ); 75 } 76 void update2( int L, int R, int l, int r, int rt ){ 77 if( L <= l && R >= r ){ 78 col[rt] += 1; 79 sum[rt] <<= 1; 80 cnt[rt] <<= 1; 81 return ; 82 } 83 pushdown( rt ); 84 int m = ( l + r ) >> 1; 85 if( L <= m ) update2( L, R, lson ); 86 if( R > m ) update2( L, R, rson ); 87 pushup( rt ); 88 } 89 ll query( int L, int R, int l, int r, int rt ){ 90 if( L <= l && R >= r ){ 91 return cnt[rt]; 92 } 93 pushdown( rt ); 94 int m = ( l + r ) >> 1; ll ret = -1; 95 if( L <= m ) ret = max( ret, query( L, R, lson ) ); 96 if( R > m ) ret = max( ret, query( L, R, rson ) ); 97 return ret; 98 } 99 int main(){ 100 //freopen( "out.txt", "w", stdout ); 101 int cas, kcnt = 1, n, m; 102 scanf( "%d", &cas ); 103 while( cas-- ){ 104 scanf( "%d %d", &n, &m ); 105 build( 1, n, 1 ); 106 char ch[2]; 107 int l, r; 108 printf( "Case #%d: ", kcnt++ ); 109 while( m-- ){ 110 scanf( "%s %d %d", &ch, &l, &r ); 111 if( ch[0] == 'D' ){ 112 int L = find( 0, l, 1, n, 1 ); 113 int R = find( 1, r, 1, n, 1 ); 114 if( L == R ){ 115 update1( L, r - l + 1, 1, n, 1 ); 116 } 117 else{ 118 update1( L, rs, 1, n, 1 ); 119 update1( R, ls, 1, n, 1 ); 120 if( L + 1 <= R - 1 ) update2( L + 1, R - 1, 1, n, 1 ); 121 } 122 } 123 else{ 124 int L = find( 0, l, 1, n, 1 ); 125 int R = find( 1, r, 1, n, 1 ); 126 if( L == R ){ 127 printf( "%d ", r - l + 1 ); 128 } 129 else{ 130 ll ans = max( ls, rs ); 131 if( L + 1 <= R - 1 ) ans = max( ans, query( L + 1, R - 1, 1, n, 1 ) ); 132 printf( "%I64d ", ans ); 133 } 134 } 135 } 136 } 137 return 0; 138 }
ZOJ 3686 A Simple Tree Problem
给你一棵树,所有的节点初始为0。给你一个节点u,有两种操作,一种是把u及其子节点全部翻转( 0 -> 1, 1 -> 0 ),第二种操作就是问你 u及其子节点有多少个1。。
先dfs整棵树,记录每棵子树的区间,假设有n个节点,树根在的节点就是[1,n]。然后就可以用线段树成段更新了。翻转的时候是sum[rt] = r - l + 1 - sum[rt];
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <vector> 6 #include <algorithm> 7 8 using namespace std; 9 10 #define LL long long 11 #define eps 1e-8 12 #define lson l, m, rt<<1 13 #define rson m+1, r, rt<<1|1 14 #define mnx 100010 15 16 int n, fst[mnx], vv[mnx], nxt[mnx], e; 17 struct node{ 18 int L, R; 19 }g[mnx]; 20 void add( int u, int v ){ 21 vv[e] = v, nxt[e] = fst[u], fst[u] = e++; 22 } 23 int c; 24 int dfs( int u ){ 25 g[u].L = ++c; 26 for( int i = fst[u]; i != -1; i = nxt[i] ) 27 dfs( vv[i] ); 28 g[u].R = c; 29 } 30 int Xor[mnx<<2], sum[mnx<<2]; 31 void pushdown( int rt, int L, int R ){ 32 int m = ( L + R ) >> 1; 33 if( Xor[rt] ){ 34 Xor[rt<<1] ^= 1, Xor[rt<<1|1] ^= 1, Xor[rt] = 0; 35 sum[rt<<1] = m - L + 1 - sum[rt<<1]; 36 sum[rt<<1|1] = R - m - sum[rt<<1|1]; 37 } 38 } 39 void pushup( int rt ){ 40 sum[rt] = sum[rt<<1] + sum[rt<<1|1]; 41 } 42 void update( int L, int R, int l, int r, int rt ){ 43 if( L <= l && R >= r ){ 44 Xor[rt] ^= 1; 45 sum[rt] = r - l + 1 - sum[rt]; 46 return ; 47 } 48 pushdown( rt, l, r ); 49 int m = ( l + r ) >> 1; 50 if( L <= m ) update( L, R, lson ); 51 if( R > m ) update( L, R, rson ); 52 pushup( rt ); 53 } 54 int query( int L, int R, int l, int r, int rt ){ 55 if( L <= l && R >= r ){ 56 return sum[rt]; 57 } 58 pushdown( rt, l, r ); 59 int m = ( l + r ) >> 1, ret = 0; 60 if( L <= m ) ret += query( L, R, lson ); 61 if( R > m ) ret += query( L, R, rson ); 62 // pushup( rt ); 63 return ret; 64 } 65 int main(){ 66 int m; 67 while( scanf( "%d%d", &n, &m ) != EOF ){ 68 memset( sum, 0, sizeof(sum) ); 69 memset( Xor, 0, sizeof(Xor) ); 70 memset( fst, -1, sizeof(fst) ); 71 c = e = 0; 72 int v; 73 for( int i = 2; i <= n; ++i ){ 74 scanf( "%d", &v ); 75 add( v, i ); 76 } 77 dfs( 1 ); 78 while( m-- ){ 79 char c[3]; 80 scanf( "%s", c ); 81 scanf( "%d", &v ); 82 if( c[0] == 'o' ) 83 update( g[v].L, g[v].R, 1, n, 1 ); 84 else 85 printf( "%d ", query( g[v].L, g[v].R, 1, n, 1 ) ); 86 } 87 puts( "" ); 88 } 89 return 0; 90 }