求不相交集合并卷积
sol:
集合并卷积?看我 FWT!
交一发,10 以上的全 T 了
然后经过参考别人代码认真比对后发现我代码里有这么一句话:
rep(s, 0, MAXSTATE) rep(i, 0, n) rep(j, 0, n - i) h[i + j][s] = inc(h[i + j][s], mul(f[i][s], g[j][s]));
把它改成
rep(i, 0, n) rep(j, 0, n - i) rep(s, 0, MAXSTATE) h[i + j][s] = inc(h[i + j][s], mul(f[i][s], g[j][s]));
就过了...
有理有据地分析一波,上面那种写法会访问 $O(2^n)$ 次不连续的空间,下面那种写法只有 $O(n)$ 次
写出来主要还是提醒自己以后数组访问尽量连续吧...
orz
#include <bits/stdc++.h> #define LL long long #define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i) #define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i) using namespace std; namespace IO{ const int BS=(1<<23)+5; int Top=0; char Buffer[BS],OT[BS],*OS=OT,*HD,*TL,SS[20]; const char *fin=OT+BS-1; char Getchar(){if(HD==TL){TL=(HD=Buffer)+fread(Buffer,1,BS,stdin);} return (HD==TL)?EOF:*HD++;} void flush(){fwrite(OT,1,OS-OT,stdout);} void Putchar(char c){*OS++ =c;if(OS==fin)flush(),OS=OT;} void write(int x){ if(!x){Putchar('0');return;} if(x<0) x=-x,Putchar('-'); while(x) SS[++Top]=x%10,x/=10; while(Top) Putchar(SS[Top]+'0'),--Top; } int read(){ int nm=0,fh=1; char cw=Getchar(); for(;!isdigit(cw);cw=Getchar()) if(cw=='-') fh=-fh; for(;isdigit(cw);cw=Getchar()) nm=nm*10+(cw-'0'); return nm*fh; } } using namespace IO; const int mod = 1e9 + 9, maxn = (1 << 21); int n; int f[21][maxn], g[21][maxn], h[21][maxn], bt[maxn]; inline int inc(int x, int y) { x += y; if (x >= mod) x -= mod; return x; } inline int dec(int x, int y) { x -= y; if (x < 0) x += mod; return x; } inline int mul(int x, int y) { return 1LL * x * y % mod; } void fwt(int *a, int n, int f) { for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j += (i << 1)) { for (int k = 0; k < i; k++) { int x = a[j + k], y = a[j + k + i]; if (f == 1) a[j + k + i] = inc(x, y); else a[j + k + i] = dec(y, x); } } } } int main() { n = read(); int MAXSTATE = (1 << n) - 1; rep(s, 0, MAXSTATE) bt[s] = __builtin_popcount(s); rep(s, 0, MAXSTATE) f[bt[s]][s] = read(); rep(s, 0, MAXSTATE) g[bt[s]][s] = read(); rep(s, 0, n) fwt(f[s], MAXSTATE + 1, 1), fwt(g[s], MAXSTATE + 1, 1); rep(i, 0, n) rep(j, 0, n - i) rep(s, 0, MAXSTATE) h[i + j][s] = inc(h[i + j][s], mul(f[i][s], g[j][s])); //rep(s, 0, MAXSTATE) rep(i, 0, n) rep(j, 0, n - i) h[i + j][s] = inc(h[i + j][s], mul(f[i][s], g[j][s])); rep(s, 0, n) fwt(h[s], MAXSTATE + 1, -1); rep(s, 0, MAXSTATE) write(h[bt[s]][s]), Putchar(' '); Putchar(' '); flush(); }