• HDU 4366 Successor(dfs序 + 分块)题解


    题意:每个人都有一个上司,每个人都有能力值和忠诚值,0是老板,现在给出m个询问,每次询问给出一个x,要求你找到x的所有直系和非直系下属中能力比他高的最忠诚的人是谁

    思路:因为树上查询很麻烦,所以我们直接dfs序把关系变成线性。然后我们再分块,把每个块按照能力值升序排列,这样我们就能直接二分查找这个块内能力值大于x的数就是二分出来的数到块末尾的所有数。但是怎么查找最忠诚的?我们直接预处理每个块内i位置到块末尾的最忠诚人的位置就行了。

    代码:

    #include<set>
    #include<map>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<string>
    #include<cstdio>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    typedef long long ll;
    using namespace std;
    const int maxn = 50000 + 10;
    const int MOD = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    struct node{
        int name, loyalty, ability;
        bool operator < (const node &x) const{
            return ability < x.ability;
        }
    }p[maxn];
    int loyalty[maxn], ability[maxn];
    int in[maxn], out[maxn];    //在dfs序列中的位置1-id
    int belong[maxn], id;
    int head[maxn], tot;
    struct Edge{
        int to, next;
    }edge[maxn];
    void init(){
        tot = id = 0;
        memset(head, -1, sizeof(head));
    }
    void addEdge(int u, int v){
        edge[tot].to = v;
        edge[tot].next = head[u];
        head[u] = tot++;
    }
    void dfs(int u){
        in[u] = ++id;
        p[id].ability = ability[u], p[id].loyalty = loyalty[u], p[id].name = u;
        for(int i = head[u]; i != -1; i = edge[i].next){
            int v = edge[i].to;
            dfs(v);
        }
        out[u] = id;
    }
    int MaxLoy[maxn];    //从位置j到所属块末尾的最大loyalty的人在dfs序列的位置
    int n, m, block, sz;
    int solve(int x){
        int l = belong[in[x]], r = belong[out[x]];
        int L, R;
        int MaxLoyalty = -1, ans = -1;
    
        L = block * (l - 1) + 1, R = min(L + block - 1, id);
        for(int i = L; i <= R; i++){
            if(in[p[i].name] > in[x] && out[p[i].name] <= out[x]){
                if(p[i].loyalty > MaxLoyalty && p[i].ability > ability[x]){
                    MaxLoyalty = p[i].loyalty;
                    ans = p[i].name;
                }
            }
        }
        L = l + 1, R = r - 1;
        node c;
        c.ability = ability[x];
        for(int i = L; i <= R; i++){
            int s = block * (i - 1) + 1, e = s + block;
            int pos = upper_bound(p + s, p + e, c) - p;
            if(pos >= e) continue;
            int tmp = MaxLoy[pos];
            if(p[tmp].loyalty > MaxLoyalty){
                MaxLoyalty = p[tmp].loyalty;
                ans = p[tmp].name;
            }
        }
        L = block * (r - 1) + 1, R = min(L + block - 1, id);
        for(int i = L; i <= R; i++){
            if(in[p[i].name] > in[x] && out[p[i].name] <= out[x]){
                if(p[i].loyalty > MaxLoyalty && p[i].ability > ability[x]){
                    MaxLoyalty = p[i].loyalty;
                    ans = p[i].name;
                }
            }
        }
        return ans;
    }
    int main(){
        int T;
        scanf("%d", &T);
        while(T--){
            init();
            int a;
            scanf("%d%d", &n, &m);
            ability[0] = -1, loyalty[0] = -1;
            for(int i = 1; i <= n - 1; i++){
                scanf("%d%d%d", &a, &loyalty[i], &ability[i]);
                addEdge(a, i);
            }
            dfs(0);
            block = (int)sqrt(id * 1.0);
            for(int i = 1; i <= id; i++){
                belong[i] = (i - 1) / block + 1;
            }
            sz = belong[id];
            for(int i = 1; i <= sz; i++){
                int s = block * (i - 1) + 1, e = min(s + block, id + 1);
                sort(p + s, p + e);
                int Max = -1, pos;
                for(int j = e - 1; j >= s; j--){
                    if(Max < p[j].loyalty){
                        Max = p[j].loyalty;
                        pos = j;
                    }
                    MaxLoy[j] = pos;
                }
            }
            while(m--){
                scanf("%d", &a);
                printf("%d
    ", solve(a));
            }
        }
        return 0;
    }
  • 相关阅读:
    AfxMessageBox详细使用说明
    动态规划: 求一个一维整数数组的最大子序列和
    常见HTTP状态码
    PHP 基础系列(三) 【转】PHP 函数实现原理及性能分析
    empty() isset() isnull() 比较
    isset() 与 array_key_exists() 比较
    PHP基础系列(二) PHP数组相关的函数分类整理
    PHP基础系列(一) PHP字符串相关的函数分类整理
    linux df 命令
    grep 同时满足多个关键字和满足任意关键字
  • 原文地址:https://www.cnblogs.com/KirinSB/p/10567136.html
Copyright © 2020-2023  润新知