• 从Dictionary源码看哈希表


    一、基本概念

    哈希:哈希是一种查找算法,在关键字和元素的存储地址之间建立一个确定的对应关系,每个关键字对应唯一的存储地址,这些存储地址构成了有限、连续的存储地址。

    哈希函数:在关键字和元素的存储地址之间建立确定的对应关系的函数。

    哈希表是一种利用哈希函数组织数据,支持快速插入和搜索的数据结构。

    哈希函数步骤:

    • 1.散列:将关键字映射到hashcode(.Net中为一个int类型的值),要求尽可能的平均分布,减少冲突

    • 2.映射:将及其分散的hashcode转换为有序、连续的存储地址

    哈希冲突的原因:

    • 1.将关键字散列为特定长度的整数值时,产生冲突

    • 2.在除留余数法中,取余数时产生冲突。

    1.构造哈希函数的要点:
    1.1.运算过程简单高效,以提高哈希表的查找、插入效率
    1.2.具有较好的散列性,以降低哈希冲突的概率
    1.3.哈希函数应具有较大的压缩性,以节省内存
    
    2.哈希函数构造方法:
    2.1.直接定址法:
    >>>>取关键字的某个线性函数值作为哈希地址: Hash(K)=α*GetHashCode(K)+C
        优点:产生冲突的可能性较小 缺点:空间复杂度可能会很高,占用大量内存
    2.2.除留余数法:
    >>>>取关键字除以某个常数所得的余数作为哈希地址: Hash(K)=GetHashCode(K) MOD C。
        该方法计算简单,适用范围广泛,是最经常使用的一种哈希函数。该方法的关键是常数的选取,一般要求是接近或等于哈希表本身的长度,理论研究表明,该常数取素数时效果最好
        
    3.解决哈希冲突的方法:
    3.1.开放定址法:它是一类以发生哈希冲突的哈希地址为自变量,通过某种哈希函数得到一个新的空闲内存单元地址的方法,开放定址法的哈希冲突函数通常是一组;
    3.2.链表法:当未发生冲突时,则直接存放该数据元素;当冲突产生时,把产生冲突的数据元素另外存放在单链表中。
    

    以上参考:

    https://zhuanlan.zhihu.com/p/63142005https://www.lmlphp.com/user/7277/article/item/355045/http://www.nowamagic.net/academy/detail/3008050

    二、从 Dictionary<TKey, TValue> 源码解读哈希表的构建

    哈希表的关键思想:通过哈希函数将关键字映射到存储桶。存储桶是一个抽象概念,用于保存相同具有哈希地址的元素。

    数组在所有编程语言中都是最基本的数据结构,实例化数组的时候,会在内存中分配一段连续的地址空间,用于保存同一类型的变量。对于哈希表来讲,数组就是实际存储元素的数据结构,数组索引就是其实际的存储地址,而哈希函数的功能就是将n个关键字唯一对应到到数组索引 0~m-1(m>=n)。为了兼顾性能,哈希函数是很难避免哈希冲突的,也就是说,没有办法直接将哈希地址作为元素的实际地址。

    假设以下情况:

    • 1.声明数组长度为13,现有8个元素需要插入到哈希表中,该8个元素对应的数组索引为[0]~[7] (实际存储地址)
    • 2.通过哈希函数,可以将8个关键字映射到哈希地址(范围:0~20)

    由于哈希冲突不可避免,如何通过哈希地址找到对应的实际存储地址?答案是通过数组在元素间构建单向链表来作为存储桶,将具有相同哈希地址的元素在保存在同一个存储桶(链表)中,并创建一个新的数组,数组长度为'哈希地址范围长度',该数组使用哈希地址作为索引,并保存链表的第一个节点的实际存储地址。下图展示了Dictionary<TKey, TValue> 中的实现。
    image

    了解了大概的原理之后,有两个问题需要解决:

    1.如何通过数组构建单项链表:

    自定义一个结构:其包含关键字、元素和next。Entry.next将具有相同哈希地址的元素构建为一个单向链表,Entry.next用于指向单向链表中的下一个元素所在的数组索引。通过哈希地址找到对应链表的第一个元素所在数组索引后,就可以找到整个单向链表,通过遍历链表对比关键字是否相等,来找到元素。

        public class Dictionary<TKey, TValue>
        {
            private struct Entry
            {
                // 链表下一元素索引
                // -1:链表结束
                // -2:freeList链表结束
                // -3:索引为0 属于freeList链表
                // -4:索引为1 属于freeList链表
                // -n-3:索引为n 属于freeList链表
                public int next;
    
                public uint hashCode;
                public TKey key;           // Key of entry
                public TValue value;         // Value of entry
            }
            private IEqualityComparer<TKey> _comparer;
    
            //保存Entry链表第一个节点的索引,默认为零 
            //Entry实际索引=_buckets[哈希地址]-1
            private int[] _buckets;
    
            private Entry[] _entries;//组成了n+1个单向链表
            //n:用于保存哈希值相同的元素
            //1:用于保存已释放的元素
    
            private int _freeCount;//已释放元素的个数
            private int _freeList;//最新已释放元素的索引
    
            private int _count;//数组中下一个将被使用的空位
    
            private int _version;//增加删除容量变化时,_version++
    
            private const int StartOfFreeList = -3;
        }
    
    

    2.如何将具有很多可能的关键字映射到有限的的哈希地址:

    该问题分为两个步骤:

    • 1.散列函数:将所有可能的关键字映射到一个有限的整数值,由于可能性非常非常多,为了减少冲突,所以该整数值范围也比较大,在.net中是一个int类型的整数值,一般称为GetHashCode()方法
    • 2.int 值的范围为-2147483648 ~ 2147483647,为了节省空间,不可能使用这么大的数组去保存单向链表头部元素的实际索引,所以需要压缩数组大小。

    如何解决:

    • 1.使用直接定址法: 哈希地址 = (GetHashCode(Ki)*0.000000001 +21) 取整 虽然在系数取很小的情况下,达到了压缩的效果,但是哈希冲突非常高,无法实现高效的查询。如果系数取大,空间复杂度又会特别高。
    • 2.使用除留余数法: 哈希地址 = GetHashCode(Ki) MOD C 实际证明该方法的哈希冲突更少在C为素数的情况下效果更好

    Dictionary<TKey, TValue>内部使用数组Entry[]来保存关键字和元素,使用 private int[] _buckets来保存单向链表头部元素所在的数组索引。上面提到,因为哈希冲突是不可避免的,对于有n个哈希地址的哈希表来说,Dictionary<TKey, TValue>一共构建了n+1个单向链表。另外单独的一个链表,用于保存已经释放的数组空位。

    增加元素逻辑:

    • 1.使用_count来作为数组的空位指针,_count值永远指向数组中下一个将被使用的空位
    • 2.使用_freeList 来保存释放链表的头部元素所在数组(_entries[])索引
    • 3.如果释放链表为空的情况下,保存元素到_entries[_count],否则保存到_entries[_freeList]
    • 4.根据关键字获取哈希地址,如果_buckets[哈希地址] 中的值不为-1,则将刚保存元素的next 置为_buckets[哈希地址]值(将元素加到单向链表的头部)。
    • 5.更新_buckets[哈希地址] 的值为_freeList或者_count
        public bool TryInsert(TKey key, TValue value)
        {
            if (key == null)
            {
                throw new ArgumentNullException("TKey不能为null");
            }
    
            if (_buckets == null)
            {
                Initialize(0);
            }
            Entry[] entries = _entries;
    
            IEqualityComparer<TKey> comparer = _comparer;
            uint hashCode = (uint)comparer.GetHashCode(key);
    
            int collisionCount = 0;//哈希碰撞次数
            ref int bucket = ref _buckets[hashCode % (uint)_buckets.Length];//元素所在的实际地址
            // Entry链表最新索引
            // -1:链表结束
            // >=0:有下一节点
            int i = bucket - 1; 
    
            //统计哈希碰撞次数
            do
            {
                if ((uint)i >= (uint)entries.Length)
                {
                    break;
                }
                if (entries[i].hashCode == hashCode && comparer.Equals(entries[i].key, key))
                {
                    entries[i].value = value;
                    _version++;
                    return true;
                }
    
                i = entries[i].next;
                if (collisionCount >= entries.Length)
                {
                    throw new InvalidOperationException("不支持多线程操作");
                }
                collisionCount++;
            } while (true);
    
            bool updateFreeList = false;
            int index;
            //如果FreeList链表中长度大于0
            //优先使用FreeList
            if (_freeCount > 0)
            {
                index = _freeList;
                updateFreeList = true;
                _freeCount--;
            }
            else
            {
                int count = _count;
                //超出数组大小
                if (count == entries.Length)
                {
                    //将数组长度扩展为大于原长度两倍的最小素数
                    var forceNewHashCodes = false;
                    var newSize = HashHelpers.ExpandPrime(_count);
                    Resize(newSize, forceNewHashCodes);
                    bucket = ref _buckets[hashCode % (uint)_buckets.Length];
                }
                index = count;
                _count = count + 1;
                entries = _entries;
            }
    
            ref Entry entry = ref entries[index];
    
            if (updateFreeList)
            {
                _freeList = StartOfFreeList - entries[_freeList].next;
            }
            entry.hashCode = hashCode;
            // Value in _buckets is 1-based
            entry.next = bucket - 1;
            entry.key = key;
            entry.value = value;
            // Value in _buckets is 1-based
            bucket = index + 1;
            _version++;
    
            // 如果不采用随机字符串哈希,并达到碰撞次数时,切换为默认比较器(采用随机字符串哈希)
            if (default(TKey) == null && collisionCount > HashHelpers.HashCollisionThreshold && comparer is NonRandomizedStringEqualityComparer) // TODO-NULLABLE: default(T) == null warning (https://github.com/dotnet/roslyn/issues/34757)
            {
                _comparer = null;
                Resize(entries.Length, true);
            }
    
            return true;
        }
    

    删除元素逻辑:

    • 1.根据关键字获取哈希地址,链表头部元素索引=_buckets[哈希地址]
    • 2.遍历链表,找到对应关键字的元素。
    • 3.将元素赋为默认值,并加入到释放链表的头部。
    • 4.构建上一个节点与下一个节点之间的指向关系 lastEle.next = nextEle.index
        /// .NetCore3.0 Remove执行之后_version没有自增
        public bool Remove(TKey key)
        {
            int[] buckets = _buckets;
            Entry[] entries = _entries;
            int collisionCount = 0;
            if (buckets != null)
            {
                uint hashCode = (uint)(_comparer?.GetHashCode(key) ?? key.GetHashCode());
                uint bucket = hashCode % (uint)buckets.Length;
                int last = -1;//记录上一个节点,在删除中间节点时,将前后节点建立关联
                int i = buckets[bucket] - 1;
                while (i >= 0)
                {
                    ref Entry entry = ref entries[i];
        
                    if (entry.hashCode == hashCode && _comparer.Equals(entry.key, key))
                    {
                        if (last < 0)
                        {
                            //删除的节点为首节点,保存最新索引
                            buckets[bucket] = entry.next + 1;
                        }
                        else
                        {
                            //删除节点不是首个节点,建立前后关系
                            entries[last].next = entry.next;
                        }
        
                        // 将删除节点加入FreeList头部
                        entry.next = StartOfFreeList - _freeList;
                        // 置为默认值
                        if (RuntimeHelpers.IsReferenceOrContainsReferences<TKey>())
                        {
                            entry.key = default;
                        }
                        if (RuntimeHelpers.IsReferenceOrContainsReferences<TValue>())
                        {
                            entry.value = default;
                        }
                        // 保存FreeList头部索引
                        _freeList = i;
                        _freeCount++;
                        return true;
                    }
                    // 当前节点不是目标节点
                    last = i;
                    i = entry.next;
                    if (collisionCount >= entries.Length)
                    {
                        // The chain of entries forms a loop; which means a concurrent update has happened.
                        // Break out of the loop and throw, rather than looping forever.
                        // ThrowHelper.ThrowInvalidOperationException_ConcurrentOperationsNotSupported();
                        throw new InvalidOperationException("不支持多线程操作");
                    }
                    collisionCount++;
                }
            }
            return false;
        }
    

    三、GitHub源码地址

    四、String.GetHashCode()方法

    不采用随机字符串的方法:源码地址

    对于某一个确定的字符串,返回确定的hashcode,缺点:容易被哈希洪水攻击。

            // Use this if and only if 'Denial of Service' attacks are not a concern (i.e. never used for free-form user input),
            // or are otherwise mitigated
            internal unsafe int GetNonRandomizedHashCode()
            {
                fixed (char* src = &_firstChar)
                {
                    Debug.Assert(src[this.Length] == '', "src[this.Length] == '\0'"\0'");
                    Debug.Assert(((int)src) % 4 == 0, "Managed string should start at 4 bytes boundary");
     
                    uint hash1 = (5381 << 16) + 5381;
                    uint hash2 = hash1;
     
                    uint* ptr = (uint*)src;
                    int length = this.Length;
     
                    while (length > 2)
                    {
                        length -= 4;
                        // Where length is 4n-1 (e.g. 3,7,11,15,19) this additionally consumes the null terminator
                        hash1 = (BitOperations.RotateLeft(hash1, 5) + hash1) ^ ptr[0];
                        hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ ptr[1];
                        ptr += 2;
                    }
     
                    if (length > 0)
                    {
                        // Where length is 4n-3 (e.g. 1,5,9,13,17) this additionally consumes the null terminator
                        hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ ptr[0];
                    }
     
                    return (int)(hash1 + (hash2 * 1566083941));
                }
            }
    

    采用随机字符串的方法: 源码地址

    特点:

    • 1.两个字符串相等,返回相同的哈希值
    • 2.不同的字符串可以返回相同的哈希值
    • 3.基于不同的.Net实现、.Net平台、.Net版本、应用程序域,同一个字符串可能返回不同的哈希值
    • 4.哈希值决不能在创建它们的应用程序域的外部使用
        public override int GetHashCode()
        {
            ulong seed = Marvin.DefaultSeed;
    
            // Multiplication below will not overflow since going from positive Int32 to UInt32.
            return Marvin.ComputeHash32(ref Unsafe.As<char, byte>(ref _firstChar), (uint)_stringLength * 2 /* in bytes, not chars */, (uint)seed, (uint)(seed >> 32));
        }
    

    好文推荐:

  • 相关阅读:
    使用SecureCRT连接虚拟机中Linux系统的详细方法以及虚拟网络配置方法
    虚拟机快照克隆多台的方法
    Linux虚拟机网络设置
    Hadoop学习笔记之一:Hadoop IPC
    webpack超详细配置, 使用教程(图文)
    webstrom提示不见了
    vuejs实现本地数据的筛选分页
    关于手机端audio无法自动播放问题解决方法
    计算机实现加法的学习心得
    计算机编码随记
  • 原文地址:https://www.cnblogs.com/Kane-Blake/p/11351485.html
Copyright © 2020-2023  润新知