Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题意:有一个农夫在N位置,他得牛在K位置。他每一步可以向左走一步,向右走一步,走到当前位置的2倍处。问农夫碰到牛所需的最短步骤。
思路:BFS三个状态,初始为N的位置。边界判断!!!可行判断!!!
代码如下:
#include <iostream> #include <queue> #include <cstring> using namespace std; struct Node{ int id; int cont; }; int n,k; int visit[200005]; //虽然没看到题意说每个位置只能走一次,但是不标记的话会内存超限 void bfs(){ queue <Node> Q; while(!Q.empty()) Q.pop(); Node h; h.id = n; h.cont = 0; visit[n] = 1; Q.push(h); while(!Q.empty()){ Node res = Q.front(); Q.pop(); if(res.id == k){ cout<<res.cont<<endl; break; } int ID = res.id; int Cont = res.cont; if(ID <= k && !visit[ID+1]){ //可行判断 visit[ID+1] = 1; Node temp; temp.id = ID+1; temp.cont = Cont+1; Q.push(temp); } if(ID >= 1 && !visit[ID-1]){ //可行判断 visit[ID-1] = 1; Node temp; temp.id = ID-1; temp.cont = Cont+1; Q.push(temp); } if(ID <= k && !visit[ID*2]){ //可行判断 visit[ID*2] = 1; Node temp; temp.id = ID*2; temp.cont = Cont+1; Q.push(temp); } } } int main() { while(cin>>n>>k){ memset(visit,0,sizeof(visit)); bfs(); } return 0; }