题目链接:BZOJ - 2178
题目分析
用Simpson积分,将圆按照 x 坐标分成连续的一些段,分别用 Simpson 求。
注意:1)Eps要设成 1e-13 2)要去掉被其他圆包含的圆。
代码
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef double LF; const LF Eps = 1e-13; const int MaxN = 1000 + 5; int n, Lc, Rc, Top, Tot; LF Lx, Rx, Ans; inline LF gmin(LF a, LF b) {return a < b ? a : b;} inline LF gmax(LF a, LF b) {return a > b ? a : b;} inline LF Sqr(LF x) {return x * x;} struct Point { LF x, y; Point() {} Point(LF a, LF b) { x = a; y = b; } }; inline LF Dis(Point p1, Point p2) { return sqrt(Sqr(p1.x - p2.x) + Sqr(p1.y - p2.y)); } struct Circle { Point o; LF r; } C[MaxN], S[MaxN]; inline bool Cmp1(Circle c1, Circle c2) { return c1.r < c2.r; } inline bool Cmp2(Circle c1, Circle c2) { return c1.o.x - c1.r < c2.o.x - c2.r; } bool Del[MaxN]; struct Segment { LF l, r; } Seg[MaxN]; inline bool Cmp3(Segment s1, Segment s2) { return s1.l < s2.l; } inline LF f(LF x) { LF ret = 0.0, p, q, Hi; Top = 0; for (int i = Lc; i <= Rc; ++i) { if (x <= S[i].o.x - S[i].r || x >= S[i].o.x + S[i].r) continue; Hi = sqrt(Sqr(S[i].r) - Sqr(S[i].o.x - x)); Seg[++Top].l = S[i].o.y - Hi; Seg[Top].r = S[i].o.y + Hi; } sort(Seg + 1, Seg + Top + 1, Cmp3); for (int i = 1, j; i <= Top; ++i) { p = Seg[i].l; q = Seg[i].r; for (j = i + 1; j <= Top; ++j) { if (Seg[j].l > q) break; if (Seg[j].r > q) q = Seg[j].r; } ret += q - p; i = j - 1; } return ret; } inline LF Simpson(LF l, LF r, LF fl, LF fmid, LF fr) { return (fl + 4.0 * fmid + fr) * (r - l) / 6.0; } inline LF RSimpson(LF l, LF r, LF fl, LF fmid, LF fr) { LF mid, p, q, x, y, z; mid = (l + r) / 2.0; p = f((l + mid) / 2.0); q = f((mid + r) / 2.0); x = Simpson(l, r, fl, fmid, fr); y = Simpson(l, mid, fl, p, fmid); z = Simpson(mid, r, fmid, q, fr); if (fabs(x - y - z) < Eps) return y + z; else return RSimpson(l, mid, fl, p, fmid) + RSimpson(mid, r, fmid, q, fr); } int main() { scanf("%d", &n); int a, b, c; for (int i = 1; i <= n; ++i) { scanf("%d%d%d", &a, &b, &c); C[i].o = Point((LF)a, (LF)b); C[i].r = (LF)c; } sort(C + 1, C + n + 1, Cmp1); memset(Del, 0, sizeof(Del)); for (int i = 1; i <= n; ++i) for (int j = i + 1; j <= n; ++j) if (Dis(C[i].o, C[j].o) <= C[j].r - C[i].r) { Del[i] = true; break; } Tot = 0; for (int i = 1; i <= n; ++i) if (!Del[i]) S[++Tot] = C[i]; sort(S + 1, S + Tot + 1, Cmp2); Ans = 0.0; for (int i = 1, j; i <= Tot; ++i) { Lc = i; Rc = i; Lx = S[i].o.x - S[i].r; Rx = S[i].o.x + S[i].r; for (j = i + 1; j <= Tot; ++j) { if (S[j].o.x - S[j].r > Rx) break; if (S[j].o.x + S[j].r > Rx) Rx = S[j].o.x + S[j].r; } Rc = j - 1; i = j - 1; Ans += RSimpson(Lx, Rx, f(Lx), f((Lx + Rx) / 2.0), f(Rx)); } printf("%.3lf ", Ans); return 0; }