• pytorch进行mnist识别实战


    mnist实战

    开始使用简单的全连接层进行mnist手写数字的识别,识别率最高能到95%,而使用两层卷积后再全连接,识别率能达到99%

    全连接:

    import torch
    from torch import nn
    from torch.nn import functional as F
    from torch import optim
    import torchvision
    from    matplotlib import pyplot as plt
    from torch.optim.lr_scheduler import StepLR
    
    #step 1:load dataset
    
    def plot_image(img, label, name):
        fig = plt.figure()
        for i in range(6):
            plt.subplot(2, 3, i + 1)
            plt.tight_layout()
            plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')
            plt.title("{}: {}".format(name, label[i].item()))
            plt.xticks([])
            plt.yticks([])
        plt.show()
    
    def plot_curve(data):
        fig = plt.figure()
        plt.plot(range(len(data)), data, color='blue')
        plt.legend(['value'], loc='upper right')
        plt.xlabel('step')
        plt.ylabel('value')
        plt.show()
    
    
    batch_size=512
    
    train_loader = torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('mnist_data',train=True,download=True,
                                   transform=torchvision.transforms.Compose(
                                       [
                                           torchvision.transforms.ToTensor(),
                                           torchvision.transforms.Normalize((0.1307,),(0.3081,))#这里的两个数字分别是数据集的均值是0.1307,标准差是0.3081
                                       ]
                                   )
                                   ),
        batch_size=batch_size,shuffle=True
    )
    
    test_loader = torch.utils.data.DataLoader(
        torchvision.datasets.MNIST('mnist_data/',train=False,download=True,#是验证集所以train=False
                                   transform=torchvision.transforms.Compose(
                                       [
                                           torchvision.transforms.ToTensor(),
                                           torchvision.transforms.Normalize((0.1307,),(0.3081,))
                                       ]
                                   )
                                   ),
        batch_size=batch_size,shuffle=False#是验证集所以无需打乱,shuffle=False
    )
    
    # x,y = next(iter(train_loader))
    # plot_image(x,y,'example')
    
    
    #step2: create network
    
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
    
            #wx+b
            self.fc1 = nn.Linear(28*28,256)#256是自己根据经验随机设定的
            self.fc2 = nn.Linear(256,64)
            self.fc3 = nn.Linear(64,10)#注意这里的10是最后识别的类别数(最后一层的输出往往是识别的类别数)
    
        def forward(self, x):
            #x : [ b 1 28 28]有batch_size张图片,通道是1维灰度图像 图片大小是28*28
    
            #h1=relu(wx+b)
            x = F.relu(self.fc1(x))#使用relu非线性激活函数包裹
            x = F.relu(self.fc2(x))
            x = F.softmax(self.fc3(x))#由于是多类别识别,所以使用softmax函数
            #x = self.fc3(x)
            return x
    
    net = Net()
    optimizer = optim.Adam(net.parameters())
    train_loss = []
    
    
    
    
    for epoch in range(5):
    
        for batch_idx,(x,y) in enumerate(train_loader):#enumerate表示在数据前面加上序号组成元组,默认序号从0开始
    
            # x :[512 1 28 28]   y : [512]
    
            #由于这里的x维度为[512 1 28 28],但是在网络中第一层就是一个全连接层,维度只能是[b,feature(784)],所以要把x打平
            #将前面多维度的tensor展平成一维
    
            # 卷积或者池化之后的tensor的维度为(batchsize,channels,x,y),其中x.size(0)
            # 指batchsize的值,最后通过x.view(x.size(0), -1)
            # 将tensor的结构转换为了(batchsize, channels * x * y),即将(channels,x,y)拉直,然后就可以和fc层连接了
    
            x = x.view(x.size(0),28*28)
            #输出之后的维度变为[512,10]
            out=net(x)
            #使用交叉熵损失
            loss = F.cross_entropy(out,y)
    
            #清零梯度——计算梯度——更新梯度
    
            #要进行梯度的清零
            optimizer.zero_grad()
    
            loss.backward()
            #功能是: w` = w-lr*grad
            optimizer.step()
    
            train_loss.append(loss.item())#将loss保存在trainloss中,而loss.item()表示将tensor 的类型转换为数值类型
    
            #打印loss
            if batch_idx % 10 == 0:
                print(epoch,batch_idx,loss.item())
    
    
    plot_curve(train_loss)
    
    total_correct = 0
    for x, y in test_loader:
        x = x.view(x.size(0),28*28)
        out = net(x)
        #out :[512,10]
        pred = out.argmax(dim = 1)
        correct = pred.eq(y).sum().float().item()#当前批次识别对的个数
        total_correct+= correct
    
    total_number = len(test_loader.dataset)
    acc = total_correct / total_number
    print('test acc',acc)
    
    
    x,y = next(iter(test_loader))
    out = net(x.view(x.size(0),28*28))
    pred = out.argmax(dim=1)
    plot_image(x,pred,'test')
    
    #optimizer = optim.SGD(net.parameters(),lr=0.1,momentum=0.9)
    #test acc 0.8783
    
    #optimizer = optim.Adam(net.parameters())
    #test acc 0.9574
    

    加入卷积:

    import torch
    import argparse
    import torch.nn as nn
    import matplotlib.pyplot as plt
    import torch.optim as optim
    import torch.nn.functional as F
    from torchvision import datasets,transforms
    from torch.optim.lr_scheduler import StepLR
    
    class Net(nn.Module):
        def __init__(self):
            super(Net,self).__init__()
            self.conv1 = nn.Conv2d(1,32,3,1)
            self.conv2 = nn.Conv2d(32,64,3,1)
            self.dropout1 = nn.Dropout2d(0.25)
            self.dropout2 = nn.Dropout2d(0.5)
            self.fc1 = nn.Linear(9216, 128)
            self.fc2 = nn.Linear(128, 10)
    
        def forward(self,x):
            x = self.conv1(x)
            x = F.relu(x)
            x = self.conv2(x)
            x = F.relu(x)
            #print(x.shape)
            x = F.max_pool2d(x, 2)
            x = self.dropout1(x)
            #print(x.shape)
            x = torch.flatten(x,1)
            #print(x.shape)
            x = self.fc1(x)
            x = F.relu(x)
            x = self.dropout2(x)
            x = self.fc2(x)
            output = F.softmax(x)
            return output
    
    #用来查看经过conv之后进入全连接层的维度
    # def main():
    #     net = Net()
    #
    #     tmp = torch.rand(10,1,28,28)
    #     out = net.forward(tmp)
    #
    #
    # if __name__=='__main__':
    #     main()
    # torch.Size([10, 64, 24, 24])
    # torch.Size([10, 64, 12, 12])
    # torch.Size([10, 9216])
    
    def plot_image(img, label, name):
        fig = plt.figure()
        for i in range(6):
            plt.subplot(2, 3, i + 1)
            plt.tight_layout()
            plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation='none')
            plt.title("{}: {}".format(name, label[i].item()))
            plt.xticks([])
            plt.yticks([])
        plt.show()
    
    def train(args,model,device,train_loader,optimizer,epoch):
        model.train()#进入训练模式来激活dropout层、正则化等的使用
        for batch_idx,(data,target) in enumerate(train_loader):
            data,target = data.to(device),target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.cross_entropy(output,target)
            loss.backward()
            optimizer.step()
            if batch_idx % args.log_interval ==0:
                print('train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
                if args.dry_run:
                    break
    
    def test(model, device, test_loader):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += F.cross_entropy(output, target, reduction='sum').item()  # sum up batch loss
                pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
                correct += pred.eq(target.view_as(pred)).sum().item()
    
        test_loss /= len(test_loader.dataset)
    
        print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
    
    def main():
        # Training settings
        parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
        parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                            help='input batch size for training (default: 64)')
        parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                            help='input batch size for testing (default: 1000)')
        parser.add_argument('--epochs', type=int, default=14, metavar='N',
                            help='number of epochs to train (default: 14)')
        parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
                            help='learning rate (default: 1.0)')
        parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                            help='Learning rate step gamma (default: 0.7)')
        parser.add_argument('--no-cuda', action='store_true', default=False,
                            help='disables CUDA training')
        parser.add_argument('--dry-run', action='store_true', default=False,
                            help='quickly check a single pass')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                            help='how many batches to wait before logging training status')
        parser.add_argument('--save-model', action='store_true', default=True,
                            help='For Saving the current Model')
        args = parser.parse_args()
        use_cuda = not args.no_cuda and torch.cuda.is_available()
    
        torch.manual_seed(args.seed)
    
        device = torch.device("cuda" if use_cuda else "cpu")
    
        kwargs = {'batch_size': args.batch_size}
        if use_cuda:
            kwargs.update({'num_workers': 1,
                           'pin_memory': True,
                           'shuffle': True},
                         )
    
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
            ])
        dataset1 = datasets.MNIST('', train=True, download=False,
                           transform=transform)
        dataset2 = datasets.MNIST('', train=False,
                           transform=transform)
        train_loader = torch.utils.data.DataLoader(dataset1,**kwargs)
        test_loader = torch.utils.data.DataLoader(dataset2, **kwargs)
    
        model = Net().to(device)
        optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
        #optimizer = optim.Adam(model.parameters())
    
        scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
        for epoch in range(1, args.epochs + 1):
            train(args, model, device, train_loader, optimizer, epoch)
            test(model, device, test_loader)
            scheduler.step()
    
    
        if args.save_model:
            torch.save(model.state_dict(), "mnist_cnn.pt")
    
        model.load_state_dict(torch.load('mnist_cnn.pt'))
    
        #观察测试结果
        for i in range(5):
            x, y = next(iter(test_loader))
            x,y = x.to(device),y.to(device)
            out = model(x)
            pred = out.argmax(dim=1)
            plot_image(x.cpu(), pred.cpu(), 'test')
    
    
    
    
    if __name__ == '__main__':
        main()
    
    
    
    #使用Adadelta 设置lr衰减
    #Test set: Average loss: 1.4739, Accuracy: 9873/10000 (99%)
    
    #使用SGD优化器,learning rate0.1 ,未设置lr的衰减
    #Test set: Average loss: 1.4735, Accuracy: 9880/10000 (99%)
    
    #使用Adam优化器,lr默认使用Adam的默认值0.001(使用0.1loss下不来) 未设置lr的衰减
    #Test set: Average loss: 1.4749, Accuracy: 9862/10000 (99%)
    
    
    
  • 相关阅读:
    Linux的目录结构
    python爬虫系列序
    Ant批量处理jmeter脚本
    SoapUI测试webservice接口
    Jmeter分布式部署
    基础知识回顾:闭包
    Jmeter简单应用
    postman安装与使用
    python2.7编码与解码
    Markdown及MarkdownPad使用规则
  • 原文地址:https://www.cnblogs.com/Jason66661010/p/13671528.html
Copyright © 2020-2023  润新知