题意:动态修改图 (G) 的边集,求每次修改后的 (sum c imes (c−1) / 2) (记每个强连通分量中的点数量为 (c) )。其中修改操作共 (m) 次,每次最多改 (k) 条边。(1≤m≤25000,1≤k≤10),图 (G) 中点数为 (n) ,(1≤n≤250)。
题解:(tarjan)由于要遍历所有边,复杂度 (mathcal{O}((V+E) imes m)),在稠密图中效率较低;而使用邻接矩阵存储边集状态,利用 (Kosaraju) 解决的复杂度将达到 (mathcal{O}(V^2 imes m)) ,然后可以利用 bitset
优化边集的存储,加速后继点的查找,复杂度 (mathcal{O}(frac{V^2 imes M}{32}))
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char s; while(!isdigit(s=getchar())) f=s=='-'?-1:f;
do x=x*10+(s^48); while(isdigit(s=getchar())); return x*f;
} const int B=8,D=5,L=31,N=260;
struct bitset {
unsigned dat[B];
inline void reset() {memset(dat,0,B<<2);}
inline void set() {memset(dat,0xff,B<<2);}
inline void set(int x) {dat[x>>D]|=1u<<(x&L);}
inline void flip(int x) {dat[x>>D]^=1u<<(x&L);}
inline bool test(int x) {return dat[x>>D]>>(x&L)&1;}
}vis,e[N],re[N];
vector<int> s;
int n,m,num,T;
#define u32 unsigned
inline void dfs1(int u) {
vis.flip(u);
for(R i=0;i<B;++i) {
while(20040109) {
register u32 tmp=vis.dat[i]&e[u].dat[i];
if(!tmp) break;
dfs1(i<<D|__builtin_ctz(tmp));
}
} s.push_back(u);
}
inline void dfs2(int u) {
vis.flip(u),++num;
for(R i=0;i<B;++i) {
while(20021204) {
register u32 tmp=vis.dat[i]&re[u].dat[i];
if(!tmp) break;
dfs2(i<<D|__builtin_ctz(tmp));
}
}
}
inline void Kosaraju() {
s.clear(),vis.set(); R ans=0;
for(R i=0;i<n;++i) if(vis.test(i)) dfs1(i);
vis.set(); for(R i=n-1;~i;--i) {
if(vis.test(s[i])) {
num=0;
dfs2(s[i]);
ans+=num*(num-1)/2;
}
} printf("%d
",ans);
}
inline void main() {
T=g(); while(T--) {
n=g(),m=g();
for(R i=0;i<n;++i) e[i].reset(),re[i].reset();
for(R i=0;i<n;++i) { register char s[N];
scanf("%s",s);
for(R j=0;j<n;++j) if(s[j]=='1')
e[i].flip(j),re[j].flip(i);
}
while(m--) { R t=g();
while(t--) { R u,v;
u=g(),v=g();
e[u-1].flip(v-1),re[v-1].flip(u-1);
} Kosaraju();
}
}
}
} signed main() {Luitaryi::main(); return 0;}
2019.12.18