• Codeforces 954 G Castle Defense


    Discription

    Today you are going to lead a group of elven archers to defend the castle that is attacked by an army of angry orcs. Three sides of the castle are protected by impassable mountains and the remaining side is occupied by a long wall that is split into n sections. At this moment there are exactly ai archers located at the i-th section of this wall. You know that archer who stands at section i can shoot orcs that attack section located at distance not exceeding r, that is all such sections jthat |i - j| ≤ r. In particular, r = 0 means that archers are only capable of shooting at orcs who attack section i.

    Denote as defense level of section i the total number of archers who can shoot at the orcs attacking this section. Reliability of the defense plan is the minimum value of defense level of individual wall section.

    There is a little time left till the attack so you can't redistribute archers that are already located at the wall. However, there is a reserve of k archers that you can distribute among wall sections in arbitrary way. You would like to achieve maximum possible reliability of the defence plan.

    Input

    The first line of the input contains three integers nr and k (1 ≤ n ≤ 500 000, 0 ≤ r ≤ n0 ≤ k ≤ 1018) — the number of sections of the wall, the maximum distance to other section archers can still shoot and the number of archers yet to be distributed along the wall. The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109) — the current number of archers at each section.

    Output

    Print one integer — the maximum possible value of defense plan reliability, i.e. the maximum possible value of minimum defense level if we distribute k additional archers optimally.

    Example

    Input
    5 0 6
    5 4 3 4 9
    Output
    5
    Input
    4 2 0
    1 2 3 4
    Output
    6
    Input
    5 1 1
    2 1 2 1 2
    Output
    3


    NOIP水平的二分答案,,二分了一个值之后直接贪心

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=1000005;
    ll a[maxn],b[maxn],k,now;
    ll n,l=1<<30,r,mid,ans,R,alr;
    
    inline bool calc(){
    	memcpy(b,a,sizeof(a)),now=0,alr=0;
    	for(int i=0;i<=R;i++) now+=b[i+1];
    	for(int i=1;i<=n;i++,now+=b[i+R]){
    		if(now<mid){
    			alr+=mid-now;
    			b[i+R]+=mid-now;
    			now=mid;
    			if(alr>k) return 0;
    		}
    		if(i>R) now-=b[i-R];
    	}
    	return 1;
    }
    
    int main(){
    	scanf("%I64d%I64d%I64d",&n,&R,&k);
    	for(int i=1;i<=n;i++){
    		scanf("%I64d",a+i);
    		l=min(l,a[i]);
    	}
    	r=2ll*1e18;
    	while(l<=r){
    		mid=l+r>>1;
    		if(calc()) ans=mid,l=mid+1;
    		else r=mid-1;
    	}
    	printf("%I64d
    ",ans);
    	return 0;
    }
    

      

     
  • 相关阅读:
    序列
    2018131
    成都七中
    NOIP2017
    洛谷P1352 CodeVS1380 没有上司的舞会
    BZOJ1087 SCOI2005 互不侵犯King
    11-4-2017 星期六 R-Day?
    11-3-2017 星期五
    11-2-2017 星期四
    USACO 2014 US Open, Silver Problem 2. Dueling GPSs
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8672758.html
Copyright © 2020-2023  润新知