• CodeForces 903D Almost Difference


    题目描述

    Let's denote a function

    You are given an array aa consisting of nn integers. You have to calculate the sum of d(a_{i},a_{j})d(ai,aj) over all pairs (i,j)(i,j) such that 1<=i<=j<=n1<=i<=j<=n .

    输入输出格式

    输入格式:

    The first line contains one integer nn ( 1<=n<=2000001<=n<=200000 ) — the number of elements in aa .

    The second line contains nn integers a_{1}a1 , a_{2}a2 , ..., a_{n}an ( 1<=a_{i}<=10^{9}1<=ai<=109 ) — elements of the array.

    输出格式:

    Print one integer — the sum of d(a_{i},a_{j})d(ai,aj) over all pairs (i,j)(i,j) such that 1<=i<=j<=n1<=i<=j<=n .

    输入输出样例

    输入样例#1: 
    5
    1 2 3 1 3
    
    输出样例#1: 
    4
    
    输入样例#2: 
    4
    6 6 5 5
    
    输出样例#2: 
    0
    
    输入样例#3: 
    4
    6 6 4 4
    
    输出样例#3: 
    -8
    

    说明

    In the first example:

    1. d(a_{1},a_{2})=0d(a1,a2)=0 ;
    2. d(a_{1},a_{3})=2d(a1,a3)=2 ;
    3. d(a_{1},a_{4})=0d(a1,a4)=0 ;
    4. d(a_{1},a_{5})=2d(a1,a5)=2 ;
    5. d(a_{2},a_{3})=0d(a2,a3)=0 ;
    6. d(a_{2},a_{4})=0d(a2,a4)=0 ;
    7. d(a_{2},a_{5})=0d(a2,a5)=0 ;
    8. d(a_{3},a_{4})=-2d(a3,a4)=2 ;
    9. d(a_{3},a_{5})=0d(a3,a5)=0 ;
    10. d(a_{4},a_{5})=2d(a4,a5)=2 .

    算法很简单,,,,但是TM的要高精度gg

    #include<bits/stdc++.h>
    #define maxn 200005
    #define ll long long
    using namespace std;  
    const int base = 1000000000;
    const int base_digits = 9;
    
    struct bigint {
        vector<int> z;
        int sign;
    
        bigint() : sign(1) { }
    
        bigint(long long v) { *this = v; }
    
        bigint(const string &s) { read(s); }
    
        void operator=(const bigint &v) {
            sign = v.sign;
            z = v.z;
        }
    
        void operator=(long long v) {
            sign = 1;
            if (v < 0)
                sign = -1, v = -v;
            z.clear();
            for (; v > 0; v = v / base)
                z.push_back(v % base);
        }
    
        bigint operator+(const bigint &v) const {
            if (sign == v.sign) {
                bigint res = v;
    
                for (int i = 0, carry = 0; i < (int) max(z.size(), v.z.size()) || carry; ++i) {
                    if (i == (int) res.z.size())
                        res.z.push_back(0);
                    res.z[i] += carry + (i < (int) z.size() ? z[i] : 0);
                    carry = res.z[i] >= base;
                    if (carry)
                        res.z[i] -= base;
                }
                return res;
            }
            return *this - (-v);
        }
    
        bigint operator-(const bigint &v) const {
            if (sign == v.sign) {
                if (abs() >= v.abs()) {
                    bigint res = *this;
                    for (int i = 0, carry = 0; i < (int) v.z.size() || carry; ++i) {
                        res.z[i] -= carry + (i < (int) v.z.size() ? v.z[i] : 0);
                        carry = res.z[i] < 0;
                        if (carry)
                            res.z[i] += base;
                    }
                    res.trim();
                    return res;
                }
                return -(v - *this);
            }
            return *this + (-v);
        }
    
        void operator*=(int v) {
            if (v < 0)
                sign = -sign, v = -v;
            for (int i = 0, carry = 0; i < (int) z.size() || carry; ++i) {
                if (i == (int) z.size())
                    z.push_back(0);
                long long cur = z[i] * (long long) v + carry;
                carry = (int) (cur / base);
                z[i] = (int) (cur % base);
                //asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
            }
            trim();
        }
    
        bigint operator*(int v) const {
            bigint res = *this;
            res *= v;
            return res;
        }
    
        friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
            int norm = base / (b1.z.back() + 1);
            bigint a = a1.abs() * norm;
            bigint b = b1.abs() * norm;
            bigint q, r;
            q.z.resize(a.z.size());
    
            for (int i = a.z.size() - 1; i >= 0; i--) {
                r *= base;
                r += a.z[i];
                int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
                int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
                int d = ((long long) s1 * base + s2) / b.z.back();
                r -= b * d;
                while (r < 0)
                    r += b, --d;
                q.z[i] = d;
            }
    
            q.sign = a1.sign * b1.sign;
            r.sign = a1.sign;
            q.trim();
            r.trim();
            return make_pair(q, r / norm);
        }
    
        friend bigint sqrt(const bigint &a1) {
            bigint a = a1;
            while (a.z.empty() || a.z.size() % 2 == 1)
                a.z.push_back(0);
    
            int n = a.z.size();
    
            int firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
            int norm = base / (firstDigit + 1);
            a *= norm;
            a *= norm;
            while (a.z.empty() || a.z.size() % 2 == 1)
                a.z.push_back(0);
    
            bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
            firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
            int q = firstDigit;
            bigint res;
    
            for (int j = n / 2 - 1; j >= 0; j--) {
                for (; ; --q) {
                    bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                    if (r1 >= 0) {
                        r = r1;
                        break;
                    }
                }
                res *= base;
                res += q;
    
                if (j > 0) {
                    int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                    int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                    int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                    q = ((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2);
                }
            }
    
            res.trim();
            return res / norm;
        }
    
        bigint operator/(const bigint &v) const {
            return divmod(*this, v).first;
        }
    
        bigint operator%(const bigint &v) const {
            return divmod(*this, v).second;
        }
    
        void operator/=(int v) {
            if (v < 0)
                sign = -sign, v = -v;
            for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
                long long cur = z[i] + rem * (long long) base;
                z[i] = (int) (cur / v);
                rem = (int) (cur % v);
            }
            trim();
        }
    
        bigint operator/(int v) const {
            bigint res = *this;
            res /= v;
            return res;
        }
    
        int operator%(int v) const {
            if (v < 0)
                v = -v;
            int m = 0;
            for (int i = z.size() - 1; i >= 0; --i)
                m = (z[i] + m * (long long) base) % v;
            return m * sign;
        }
    
        void operator+=(const bigint &v) {
            *this = *this + v;
        }
        void operator-=(const bigint &v) {
            *this = *this - v;
        }
        void operator*=(const bigint &v) {
            *this = *this * v;
        }
        void operator/=(const bigint &v) {
            *this = *this / v;
        }
    
        bool operator<(const bigint &v) const {
            if (sign != v.sign)
                return sign < v.sign;
            if (z.size() != v.z.size())
                return z.size() * sign < v.z.size() * v.sign;
            for (int i = z.size() - 1; i >= 0; i--)
                if (z[i] != v.z[i])
                    return z[i] * sign < v.z[i] * sign;
            return false;
        }
    
        bool operator>(const bigint &v) const {
            return v < *this;
        }
        bool operator<=(const bigint &v) const {
            return !(v < *this);
        }
        bool operator>=(const bigint &v) const {
            return !(*this < v);
        }
        bool operator==(const bigint &v) const {
            return !(*this < v) && !(v < *this);
        }
        bool operator!=(const bigint &v) const {
            return *this < v || v < *this;
        }
    
        void trim() {
            while (!z.empty() && z.back() == 0)
                z.pop_back();
            if (z.empty())
                sign = 1;
        }
    
        bool isZero() const {
            return z.empty() || (z.size() == 1 && !z[0]);
        }
    
        bigint operator-() const {
            bigint res = *this;
            res.sign = -sign;
            return res;
        }
    
        bigint abs() const {
            bigint res = *this;
            res.sign *= res.sign;
            return res;
        }
    
        long long longValue() const {
            long long res = 0;
            for (int i = z.size() - 1; i >= 0; i--)
                res = res * base + z[i];
            return res * sign;
        }
    
        friend bigint gcd(const bigint &a, const bigint &b) {
            return b.isZero() ? a : gcd(b, a % b);
        }
        friend bigint lcm(const bigint &a, const bigint &b) {
            return a / gcd(a, b) * b;
        }
    
        void read(const string &s) {
            sign = 1;
            z.clear();
            int pos = 0;
            while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
                if (s[pos] == '-')
                    sign = -sign;
                ++pos;
            }
            for (int i = s.size() - 1; i >= pos; i -= base_digits) {
                int x = 0;
                for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                    x = x * 10 + s[j] - '0';
                z.push_back(x);
            }
            trim();
        }
    
        friend istream& operator>>(istream &stream, bigint &v) {
            string s;
            stream >> s;
            v.read(s);
            return stream;
        }
    
        friend ostream& operator<<(ostream &stream, const bigint &v) {
            if (v.sign == -1)
                stream << '-';
            stream << (v.z.empty() ? 0 : v.z.back());
            for (int i = (int) v.z.size() - 2; i >= 0; --i)
                stream << setw(base_digits) << setfill('0') << v.z[i];
            return stream;
        }
    
        static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
            vector<long long> p(max(old_digits, new_digits) + 1);
            p[0] = 1;
            for (int i = 1; i < (int) p.size(); i++)
                p[i] = p[i - 1] * 10;
            vector<int> res;
            long long cur = 0;
            int cur_digits = 0;
            for (int i = 0; i < (int) a.size(); i++) {
                cur += a[i] * p[cur_digits];
                cur_digits += old_digits;
                while (cur_digits >= new_digits) {
                    res.push_back(int(cur % p[new_digits]));
                    cur /= p[new_digits];
                    cur_digits -= new_digits;
                }
            }
            res.push_back((int) cur);
            while (!res.empty() && res.back() == 0)
                res.pop_back();
            return res;
        }
    
        typedef vector<long long> vll;
    
        static vll karatsubaMultiply(const vll &a, const vll &b) {
            int n = a.size();
            vll res(n + n);
            if (n <= 32) {
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        res[i + j] += a[i] * b[j];
                return res;
            }
    
            int k = n >> 1;
            vll a1(a.begin(), a.begin() + k);
            vll a2(a.begin() + k, a.end());
            vll b1(b.begin(), b.begin() + k);
            vll b2(b.begin() + k, b.end());
    
            vll a1b1 = karatsubaMultiply(a1, b1);
            vll a2b2 = karatsubaMultiply(a2, b2);
    
            for (int i = 0; i < k; i++)
                a2[i] += a1[i];
            for (int i = 0; i < k; i++)
                b2[i] += b1[i];
    
            vll r = karatsubaMultiply(a2, b2);
            for (int i = 0; i < (int) a1b1.size(); i++)
                r[i] -= a1b1[i];
            for (int i = 0; i < (int) a2b2.size(); i++)
                r[i] -= a2b2[i];
    
            for (int i = 0; i < (int) r.size(); i++)
                res[i + k] += r[i];
            for (int i = 0; i < (int) a1b1.size(); i++)
                res[i] += a1b1[i];
            for (int i = 0; i < (int) a2b2.size(); i++)
                res[i + n] += a2b2[i];
            return res;
        }
    
        bigint operator*(const bigint &v) const {
            vector<int> a6 = convert_base(this->z, base_digits, 6);
            vector<int> b6 = convert_base(v.z, base_digits, 6);
            vll a(a6.begin(), a6.end());
            vll b(b6.begin(), b6.end());
            while (a.size() < b.size())
                a.push_back(0);
            while (b.size() < a.size())
                b.push_back(0);
            while (a.size() & (a.size() - 1))
                a.push_back(0), b.push_back(0);
            vll c = karatsubaMultiply(a, b);
            bigint res;
            res.sign = sign * v.sign;
            for (int i = 0, carry = 0; i < (int) c.size(); i++) {
                long long cur = c[i] + carry;
                res.z.push_back((int) (cur % 1000000));
                carry = (int) (cur / 1000000);
            }
            res.z = convert_base(res.z, 6, base_digits);
            res.trim();
            return res;
        }
    }ans;
    
    ll a[maxn],num[maxn],n,ky;
    ll tot,cal,del,cnt[maxn];
    int main(){
    	scanf("%lld",&n);
    	for(int i=1;i<=n;i++){
    		scanf("%lld",a+i);
    		num[i]=a[i];
    	}
    	
    	sort(num+1,num+n+1);
    	ky=unique(num+1,num+n+1)-num-1;
    	
    	ans=0;
    	for(int i=1;i<=n;cnt[a[i]]++,tot+=num[a[i]],i++){
    		a[i]=lower_bound(num+1,num+ky+1,a[i])-num;
    		ans+=num[a[i]]*(ll)(i-1);
    		ans-=tot;
    		if(num[a[i]+1]==num[a[i]]+1) ans+=cnt[a[i]+1];
    		if(num[a[i]-1]==num[a[i]]-1) ans-=cnt[a[i]-1];
    		
    	}
    	
        cout<<ans<<endl;
    	return 0;
    }
    

      

  • 相关阅读:
    剑指Offer_编程题_从尾到头打印链表
    剑指Offer_编程题_替换空格
    剑指Offer_编程题_二维数组中的查找
    我用java爬虫爬了一个图片网站
    docker安装mysql5.7
    设计模式和设计原则
    nginx 限流配置
    JAVA性能监控与调优参考文档链接
    单例模式
    Java开发中对Redis的基本操作
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8422709.html
Copyright © 2020-2023  润新知