既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减
dp(v) = min{ dp(p)+xv*yp+1 }
假设dp(v)由i转移比由j转移优(i>j), 那么
dp(i)+xv*yi+1 < dp(j)+xv*yj+1
化简得 (dp(i) - dp(j))/(yi+1-yj+1) > -xv
然后就斜率优化, 单调队列维护一个下凸函数
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
1597: [Usaco2008 Mar]土地购买
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2398 Solved: 869
[Submit][Status][Discuss]
Description
农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.
Input
* 第1行: 一个数: N
* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽
Output
* 第一行: 最小的可行费用.
Sample Input
100 1
15 15
20 5
1 100
输入解释:
共有4块土地.
Sample Output
HINT
FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.