• CF1375H Set Merging


    Description

    You are given a permutation $ a_1, a_2, dots, a_n $ of numbers from $ 1 $ to $ n $ . Also, you have $ n $ sets $ S_1,S_2,dots, S_n $ , where $ S_i={a_i} $ . Lastly, you have a variable $ cnt $ , representing the current number of sets. Initially, $ cnt = n $ .

    We define two kinds of functions on sets:

    $ f(S)=minlimits_{uin S} u $ ;

    $ g(S)=maxlimits_{uin S} u $ .

    You can obtain a new set by merging two sets $ A $ and $ B $ , if they satisfy $ g(A) < f(B) $ (Notice that the old sets do not disappear).

    Formally, you can perform the following sequence of operations:

    - $ cntgets cnt+1 $ ;
    - $ S_{cnt}=S_ucup S_v $ , you are free to choose $ u $ and $ v $ for which $ 1le u, v < cnt $ and which satisfy $ g(S_u) < f(S_v) $ .

    You are required to obtain some specific sets.

    There are $ q $ requirements, each of which contains two integers $ l_i $ , $ r_i $ , which means that there must exist a set $ S_{k_i} $ ( $ k_i $ is the ID of the set, you should determine it) which equals $ {a_umid l_ileq uleq r_i} $ , which is, the set consisting of all $ a_i $ with indices between $ l_i $ and $ r_i $ .

    In the end you must ensure that $ cntleq 2.2 imes 10^6 $ . Note that you don&#039;t have to minimize $ cnt $ . It is guaranteed that a solution under given constraints exists.

    Solution

    合并两个集合的要求是它们其中一个的最大值小于另一个的最小值,题中要求合并出一段区间

    在权值线段树上每个节点维护该节点上的数的在原数组中的下标

    每次合并出给定集合可以在权值线段树上爆搜,在每个节点找到在区间内的数合并即可

    因为每个节点最多可以合并出的集合数为$len^2$,$len$为节点大小,可以用map维护每个节点已经合并出哪些区间的集合

    在线段树较上层,限制时间复杂度的是每个节点的经过次数和,因为不可能每个节点的所有区间都会被合并出

    在线段树较下层,限制时间复杂度的是每个节点的能合并出的集合数之和,因为当所有集合都被合并出就相当于$O(1)$回答了

    解上层和下层的分界线在第几层

    $$sum_{i=1}^x (2^{log n -i}frac{{2^i}^2}{2})=qspace 2^{log n-x}$$

    解得$x=frac{log q}{2}$

    将两层的时间复杂度上限算出,即将$x$回代

    时间复杂度$O(nsqrt q)$

    #include<unordered_map>
    #include<algorithm>
    #include<iostream>
    #include<utility>
    #include<vector>
    #include<cstdio>
    #include<map>
    using namespace std;
    int n,pos[5005],ans[100005],tot,q;
    map<pair<int,int>,int>mp[20005];
    vector<int>ve[20005];
    pair<int,int>S[2200005];
    inline int read(){
        int f=1,w=0;
        char ch=0;
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9')w=(w<<1)+(w<<3)+ch-'0',ch=getchar();
        return f*w;
    }
    void build(int i,int l,int r){
        for(int j=l;j<=r;j++)ve[i].push_back(pos[j]);
        sort(ve[i].begin(),ve[i].end());
        if(l==r)return;
        int mid=l+r>>1;
        build(i<<1,l,mid),build(i<<1|1,mid+1,r);
    }
    int query(int i,int l,int r,int L,int R){
        int left=lower_bound(ve[i].begin(),ve[i].end(),L)-ve[i].begin(),right=upper_bound(ve[i].begin(),ve[i].end(),R)-ve[i].begin()-1,mid=l+r>>1;
        if(right<left)return 0;
        if(right==left)return ve[i][left];
        if(mp[i].find(make_pair(left,right))!=mp[i].end())return mp[i][make_pair(left,right)];
        int lc=query(i<<1,l,mid,L,R),rc=query(i<<1|1,mid+1,r,L,R);
        if(!lc||!rc)return mp[i][make_pair(left,right)]=lc|rc;
        S[++tot]=make_pair(lc,rc);
        return mp[i][make_pair(left,right)]=tot;
    }
    int main(){
        tot=n=read(),q=read();
        for(int i=1;i<=n;i++)pos[read()]=i;
        build(1,1,n);
        for(int i=1;i<=q;i++){
            int l=read(),r=read();
            ans[i]=query(1,1,n,l,r);
        }
        printf("%d
    ",tot);
        for(int i=n+1;i<=tot;i++)printf("%d %d
    ",S[i].first,S[i].second);
        for(int i=1;i<=q;i++)printf("%d ",ans[i]);
        return 0;
    }
    Set Merging
  • 相关阅读:
    IDEA 使用镜像快速创建SpringBoot项目
    ajax基础学习笔记
    GitHub高效搜索
    MVC收藏的实现
    一个显示界面
    R-MS
    MS-API。AJAS
    MS-MVCAJAS 秒杀的添加功能吧
    真-API控制器AJAS
    真-API.DALBLL.AJAS/// 添加/// 绑定分类/// 显示,查询/// 删除//删除/// 反填/// 修改
  • 原文地址:https://www.cnblogs.com/JDFZ-ZZ/p/14552249.html
Copyright © 2020-2023  润新知