• spark graphx图计算


    一、使用graph做好友推荐

    import org.apache.spark.graphx.{Edge, Graph, VertexId}
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext}
    //求共同好友
    object CommendFriend {
    
      def main(args: Array[String]): Unit = {
        //创建入口
        val conf: SparkConf = new SparkConf().setAppName("CommendFriend").setMaster("local[*]")
        val sc: SparkContext = new SparkContext(conf)
        //点的集合
        //
        val uv: RDD[(VertexId,(String,Int))] = sc.parallelize(Seq(
          (133, ("毕东旭", 58)),
          (1, ("贺咪咪", 18)),
          (2, ("范闯", 19)),
          (9, ("贾璐燕", 24)),
          (6, ("马彪", 23)),
    
          (138, ("刘国建", 40)),
          (16, ("李亚茹", 18)),
          (21, ("任伟", 25)),
          (44, ("张冲霄", 22)),
    
          (158, ("郭佳瑞", 22)),
          (5, ("申志宇", 22)),
          (7, ("卫国强", 22))
        ))
        //边的集合
        //边Edge
        val ue: RDD[Edge[Int]] = sc.parallelize(Seq(
          Edge(1, 133,0),
          Edge(2, 133,0),
          Edge(9, 133,0),
          Edge(6, 133,0),
    
          Edge(6, 138,0),
          Edge(16, 138,0),
          Edge(44, 138,0),
          Edge(21, 138,0),
    
          Edge(5, 158,0),
          Edge(7, 158,0)
        ))
        //构建图(连通图)
        val graph: Graph[(String, Int), Int] = Graph(uv,ue)
        //调用连通图算法
        graph
          .connectedComponents()
          .vertices
          .join(uv)
          .map{
            case (uid,(minid,(name,age)))=>(minid,(uid,name,age))
          }.groupByKey()
          .foreach(println(_))
        //关闭
      }
    }

    二、用户标签数据合并Demo

    测试数据

    陌上花开 旧事酒浓 多情汉子 APP爱奇艺:10 BS龙德广场:8

    多情汉子 满心闯 K韩剧:20

    满心闯 喜欢不是爱 不是唯一 APP爱奇艺:10

    装逼卖萌无所不能 K欧莱雅面膜:5

    计算结果数据

    (-397860375,(List(喜欢不是爱, 不是唯一, 多情汉子, 多情汉子, 满心闯, 满心闯, 旧事酒浓, 陌上花开),List((APP爱奇艺,20), (K韩剧,20), (BS龙德广场,8))))

    (553023549,(List(装逼卖萌无所不能),List((K欧莱雅面膜,5))))

    import org.apache.spark.graphx.{Edge, Graph, VertexId}
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext}
    
    
    
    object UserRelationDemo {
    
      def main(args: Array[String]): Unit = {
        //创建入口
        val conf: SparkConf = new SparkConf().setAppName("CommendFriend").setMaster("local[*]")
        val sc: SparkContext = new SparkContext(conf)
    
        //读取数据
        val rdd: RDD[String] = sc.textFile("F:\dmp\graph")
    
        //点的集合
        val uv: RDD[(VertexId, (String, List[(String, Int)]))] = rdd.flatMap(line => {
          val arr: Array[String] = line.split(" ")
          val tags: List[(String, Int)] = arr.filter(_.contains(":")).map(tagstr => {
            val arr: Array[String] = tagstr.split(":")
            (arr(0), arr(1).toInt)
          }).toList
          val filterd: Array[String] = arr.filter(!_.contains(":"))
          filterd.map(nickname => {
           if(nickname.equals(filterd(0))) {
             (nickname.hashCode.toLong, (nickname, tags))
           }else{
             (nickname.hashCode.toLong, (nickname, List.empty))
           }
          })
        })
        //边的集合
        val ue: RDD[Edge[Int]] = rdd.flatMap(line => {
          val arr: Array[String] = line.split(" ")
          val filterd: Array[String] = arr.filter(!_.contains(":"))
          filterd.map(nickname => Edge(filterd(0).hashCode.toLong, nickname.hashCode.toLong, 0))
        })
        //构建图
        val graph: Graph[(String, List[(String, Int)]), Int] = Graph(uv,ue)
    
        //连通图算法找关系
        graph
          .connectedComponents()
          .vertices
          .join(uv)
          .map{
            case (uid,(minid,(nickname,list))) => (minid,(List(uid),List(nickname),list))
          }
          .reduceByKey{
            case (t1,t2) =>
              (
                t1._1++t2._1 distinct ,
                t1._2++t2._2 distinct,
                t1._3++t2._3.groupBy(_._1).mapValues(_.map(_._2).reduce(_+_))
                //.groupBy(_._1).mapValues(_.map(_._2).sum)
                // list.groupBy(_._1).mapValues(_.map(_._2).foldLeft(0)(_+_))
              )
          }
          .foreach(println(_))
    
        //关闭
        sc.stop()
      }
    }

    三、用户标签数据合并

    package cn.bw.mock.tags

    import cn.bw.mock.utils.TagsUtil
    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.broadcast.Broadcast
    import org.apache.spark.graphx.{Edge, Graph, VertexId, VertexRDD}
    import org.apache.spark.rdd.RDD
    import org.apache.spark.sql.{Row, SparkSession}
    import scala.collection.mutable.ListBuffer
    /**
      * Created by zcw on 2018/10/16
      */
    object TagsContextV2 {
      def main(args: Array[String]): Unit = {
        //1.判断参数的合法性
        if(args.length != 4){
          println(
            """
              |cn.bw.mock.tags.TagsContext
              |参数数量错误!!!
              |需要:
              |LogInputPath
              |AppDicPath
              |StopWordsDicPath
              |ResultOutputPath
            """.stripMargin)
          sys.exit()
        }
        //2.接受参数
        val Array(logInputPath,appDicPath,stopWordsDicPath,resultOutputPath) = args
        //3.创建SparkSession
        val conf: SparkConf = new SparkConf()
          .setAppName(s"${this.getClass.getSimpleName}")
          .setMaster("local")
          .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
        val spark: SparkSession = SparkSession
          .builder()
          .config(conf)
          .getOrCreate()
        val sc: SparkContext = spark.sparkContext
        //4.读取app字典
        val appDic: Map[String, String] = sc.textFile(appDicPath).map(line => {
          val fields: Array[String] = line.split(":")
          (fields(0), fields(1))
        }).collect().toMap
        //5.广播app字典
        val appdicBC: Broadcast[Map[String, String]] = sc.broadcast(appDic)
        //6.读取停用词
        val stopwordsDic: Map[String, Int] = sc.textFile(stopWordsDicPath).map((_,1)).collect().toMap
        //7.广播通用词典
        val stopwordsBC: Broadcast[Map[String, Int]] = sc.broadcast(stopwordsDic)
        import spark.implicits._
        val baseRDD: RDD[Row] = spark.read.parquet(logInputPath).where(TagsUtil.hasSomeUserIdCondition).rdd
        //点
        val uv: RDD[(VertexId, (ListBuffer[String], List[(String, Int)]))] = baseRDD.map(
          row => {
            //广告标签
            val adsMap: Map[String, Int] = Tags4Ads.makeTags(row)
            //APP标签
            val appMap: Map[String, Int] = Tags4App.makeTags(row, appdicBC.value)
            //地域标签
            val areaMap: Map[String, Int] = Tags4Area.makeTags(row)
            //设备标签
            val deviceMap: Map[String, Int] = Tags4Device.makeTags(row)
            //关键词标签
            val keywordsMap: Map[String, Int] = Tags4KeyWords.makeTags(row, stopwordsBC.value)
            //获取用户id
            val allUserIDs: ListBuffer[String] = TagsUtil.getAllUserId(row)
            //用户的标签
            val tags = (adsMap ++ appMap ++ areaMap ++ deviceMap ++ keywordsMap).toList
            (allUserIDs(0).hashCode.toLong, (allUserIDs, tags))
          }
        )
        //边
        val ue: RDD[Edge[Int]] = baseRDD.flatMap(row => {
          //获取用户id
          val allUserIDs: ListBuffer[String] = TagsUtil.getAllUserId(row)
          allUserIDs.map(uid => Edge(allUserIDs(0).hashCode.toLong, uid.hashCode.toLong, 0))
        })
        //图
        val graph = Graph(uv,ue)
        //连通图
        val vertices: VertexRDD[VertexId] = graph.connectedComponents().vertices
        //join
        vertices.join(uv).map{
          case(uid,(commid,(uids,tags))) => (commid,(uids,tags))
        }.reduceByKey{
          case (t1,t2) => (t1._1 ++ t2._1.distinct,(t1._2 ++ t2._2).groupBy(_._1).mapValues(_.foldLeft(0)(_+_._2)).toList)
        }.saveAsTextFile(resultOutputPath)
        //关闭SparkSession
        spark.close()
      }
    }

    四、用户最终标签和衰减系数

  • 相关阅读:
    源码剖析Django REST framework的请求生命周期
    Django REST framework中的版本控制
    Django REST framework反向生成url
    Django的ModelForm
    SQL Server 2008 R2导出数据脚本的方法
    未在本地计算机上注册 Microsoft.Jet.OLEDB.4.0 提供程序
    Webservice发布出现 测试窗体只能用于来自本地计算机的请求
    StreamWriter和StremReader简单的用法
    (转)PHP下编码转换函数mb_convert_encoding与iconv的使用说明
    (转)PHP中构造函数和析构函数解析
  • 原文地址:https://www.cnblogs.com/JBLi/p/11552443.html
Copyright © 2020-2023  润新知