• 联考20200723 T1 数



    分析:

    题解看不懂,同机房究极巨佬给了另一种做法
    直接开始化式子:

    \[Ans_m \]

    \[=\sum_{i=0}^{n}a_i\sum_{j=0}^{n}(-1)^j\binom{m}{j}\binom{n-m}{i-j} \]

    \[=\sum_{i=0}^{n}a_i[x^i]((1+x)^{n-m}(1-x)^m) \]

    \[=\sum_{i=0}^{n}a_i[x^i]((1+x)^{n-m}(2-(1+x))^m) \]

    \[=\sum_{i=0}^{n}a_i[x^i](\sum_{j=0}^{m}(-1)^{m-j}2^j\binom{m}{j}(1+x)^{n-j}) \]

    \[=\sum_{j=0}^{m}(-1)^{m-j}2^j\binom{m}{j}\sum_{i=0}^{n}a_i[x^i](1+x)^{n-j} \]

    \[=\sum_{j=0}^{m}(-1)^{m-j}2^j\binom{m}{j}\sum_{i=0}^{n-j}a_i[x^i](1+x)^{n-j} \]

    \[=\sum_{j=0}^{m}(-1)^{m-j}2^j\binom{m}{j}\sum_{i=0}^{n-j}a_i\binom{n-j}{i} \]

    全程只需使用二项式定理
    扑通扑通跪下来
    后面这个\(F_{n-j}=\sum_{i=0}^{n-j}a_i\binom{n-j}{i}\)是卷积的形式,用一次NTT快速求出所有\(F\)
    变成:

    \[Ans_m=\sum_{j=0}^{m}(-1)^{m-j}2^jF_{n-j} \]

    又是一个卷积的形式,再次使用NTT快速求出所有\(Ans\)
    (日常被开除人籍系列)
    复杂度\(O(nlogn)\)
    OJ很慢(自己人菜常数大),\(10^6\)卡不过去(悲)

    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<map>
    #include<vector>
    #include<string>
    
    #define maxn 2500005
    #define INF 0x3f3f3f3f
    #define MOD 998244353
    
    using namespace std;
    
    inline long long getint()
    {
    	long long num=0,flag=1;char c;
    	while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    	while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
    	return num*flag;
    }
    
    int n;
    int A[maxn],B[maxn],F[maxn];
    int rev[maxn];
    int a[maxn],S,M,BB;
    int Wl,Wl2,w[maxn];
    int fac[maxn],inv[maxn],pw2[maxn];
    unsigned int Ans,pw[maxn];
    
    inline int upd(int x){return x<MOD?x:x-MOD;}
    inline int ksm(int num,int k)
    {
    	int ret=1;
    	for(;k;k>>=1,num=1ll*num*num%MOD)if(k&1)ret=1ll*ret*num%MOD;
    	return ret;
    }
    
    inline void init(int N)
    {
    	Wl=w[0]=1;
    	while((Wl<<1)<=N)Wl<<=1;
    	w[1]=ksm(3,(MOD-1)/(Wl<<1)),Wl2=Wl<<1;
    	for(int i=2;i<=Wl2;i++)w[i]=1ll*w[i-1]*w[1]%MOD;
    }
    inline void NTT(int *a,int N,int opt)
    {
    	for(int i=0;i<N;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    	for(int i=1,B=Wl;i<N;i<<=1,B>>=1)
    		for(int j=0,t=i<<1;j<N;j+=t)for(int k=0,x=0;k<i;k++,x+=B)
    		{
    			int v=1ll*a[i+j+k]*w[opt==1?x:Wl2-x]%MOD;
    			a[i+j+k]=upd(a[j+k]-v+MOD),a[j+k]=upd(a[j+k]+v);
    		}
    	if(!~opt)for(int i=0,Inv=ksm(N,MOD-2);i<N;i++)a[i]=1ll*a[i]*Inv%MOD;
    }
    
    inline int C(int p,int q)
    {return 1ll*fac[p]*inv[q]%MOD*inv[p-q]%MOD;}
    
    int main()
    {
    	n=getint(),a[0]=getint(),S=getint(),M=getint(),BB=getint();
    	init(2*n);pw[0]=pw2[0]=1;
    	for(int i=1;i<=n;i++)pw[i]=pw[i-1]*1000000007,pw2[i]=upd(pw2[i-1]+pw2[i-1]);
    	for(int i=1;i<=n;i++)a[i]=(1ll*(a[i-1]^S)*M+BB)%MOD;
    	fac[0]=fac[1]=inv[0]=inv[1]=1;
    	for(int i=2;i<=n;i++)fac[i]=1ll*fac[i-1]*i%MOD;
    	for(int i=2;i<=n;i++)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
    	for(int i=2;i<=n;i++)inv[i]=1ll*inv[i]*inv[i-1]%MOD;
    	int len=1;
    	while(len<=2*n)len<<=1;
    	for(int i=0;i<len;i++)rev[i]=(rev[i>>1]>>1)|(i&1?len>>1:0);
    	for(int i=0;i<=n;i++)A[i]=1ll*a[i]*inv[i]%MOD,B[i]=inv[i];
    	NTT(A,len,1),NTT(B,len,1);
    	for(int i=0;i<len;i++)A[i]=1ll*A[i]*B[i]%MOD;
    	NTT(A,len,-1);
    	for(int i=0;i<=n;i++)F[i]=1ll*A[i]*fac[i]%MOD;
    	for(int i=0;i<len;i++)A[i]=B[i]=0;
    	for(int i=0;i<=n;i++)A[i]=1ll*pw2[i]*inv[i]%MOD*F[n-i]%MOD,B[i]=i&1?MOD-inv[i]:inv[i];
    	NTT(A,len,1),NTT(B,len,1);
    	for(int i=0;i<len;i++)A[i]=1ll*A[i]*B[i]%MOD;
    	NTT(A,len,-1);
    	for(int i=0;i<=n;i++)F[i]=1ll*A[i]*fac[i]%MOD;
    	for(int i=0;i<=n;i++)Ans+=((unsigned int)F[i])*pw[i];
    	cout<<Ans<<endl;
    }
    

  • 相关阅读:
    本地时间与UTC(世界协调时间)的转换
    windows共享在linux下挂载
    日期中带的 T 是什么意思
    FCBU喜马拉雅音频批量下载器
    C#使用[CefSharp]Chrome浏览器(1)安装
    云锵投资 2022 年 2 月简报
    云锵投资 2022 年 1 月简报
    MySQL分组(group by)取最大值、最小值
    tabel布局中给tr加border边框
    ant 使用指南
  • 原文地址:https://www.cnblogs.com/IzayoiDoyo/p/13367080.html
Copyright © 2020-2023  润新知