简单区间dp。
考虑 (f_{i,j,mn,mx})表示 (i,j) 区间的最大值为 (mx),最小值为 (mn) 的最小花费,(g_{i,j}) 为删掉 ([i,j]) 的最小花费。目标答案:(g_{1,n})
我们容易发现这个状态可以由区间 ([L,R-1]) 和 ([R,R]) 合并起来,即加入一个 (v_r) ,第一个转移方程 (f_{i,j,min(mn,v_r),max(mx,v_r)} = min {f_{i,j-1,mn,mx}})
我们还可以枚举断点 (k) , 把区间分成 ([L,k]) 和 ([k+1,r])
(f_{i,j,mn,mx} = min (f_{i,j,mn,mx},f_{i,k,mn,mx} + g_{k+1,r}))
更新 (g_{l,r})
枚举 (f_{l,r,mn,mx}) 最小值为 (mn),最小值为 (mx),模拟删去过程就好了。
(g_{l,r} = min(f_{l,r,mn,mx}+a+b(mx-mn)^2))
这题没了
// powered by c++11
// by Isaunoya
#include<bits/stdc++.h>
#define rep(i , x , y) for(register int i = (x) ; i <= (y) ; ++ i)
#define Rep(i , x , y) for(register int i = (x) ; i >= (y) ; -- i)
using namespace std ;
using db = double ;
using ll = long long ;
using uint = unsigned int ;
#define int long long
using pii = pair < int , int > ;
#define ve vector
#define Tp template
#define all(v) v.begin() , v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
#define fir first
#define sec second
// the cmin && cmax
Tp < class T > void cmax(T & x , const T & y) {
if(x < y) x = y ;
}
Tp < class T > void cmin(T & x , const T & y) {
if(x > y) x = y ;
}
// sort , unique , reverse
Tp < class T > void sort(ve < T > & v) {
sort(all(v)) ;
}
Tp < class T > void unique(ve < T > & v) {
sort(all(v)) ;
v.erase(unique(all(v)) , v.end()) ;
}
Tp < class T > void reverse(ve < T > & v) {
reverse(all(v)) ;
}
const int SZ = 0x191981 ;
struct FILEIN {
~ FILEIN () {} char qwq[SZ] , * S = qwq , * T = qwq , ch ;
char GETC() {
return (S == T) && (T = (S = qwq) + fread(qwq , 1 , SZ , stdin) , S == T) ? EOF : * S ++ ;
}
FILEIN & operator >> (char & c) {
while(isspace(c = GETC())) ;
return * this ;
}
FILEIN & operator >> (string & s) {
while(isspace(ch = GETC())) ;
s = ch ;
while(! isspace(ch = GETC())) s += ch ;
return * this ;
}
Tp < class T > void read(T & x) {
bool sign = 1 ;
while((ch = GETC()) < 0x30) if(ch == 0x2d) sign = 0 ;
x = (ch ^ 0x30) ;
while((ch = GETC()) > 0x2f) x = x * 0xa + (ch ^ 0x30) ;
x = sign ? x : -x ;
}
FILEIN & operator >> (int & x) {
return read(x) , * this ;
}
FILEIN & operator >> (signed & x) {
return read(x) , * this ;
}
FILEIN & operator >> (unsigned & x) {
return read(x) , * this ;
}
} in ;
struct FILEOUT {
const static int LIMIT = 0x114514 ;
char quq[SZ] , ST[0x114] ;
signed sz , O ;
~ FILEOUT () {
sz = O = 0 ;
}
void flush() {
fwrite(quq , 1 , O , stdout) ;
fflush(stdout) ;
O = 0 ;
}
FILEOUT & operator << (char c) {
return quq[O ++] = c , * this ;
}
FILEOUT & operator << (string str) {
if(O > LIMIT) flush() ;
for(char c : str) quq[O ++] = c ;
return * this ;
}
Tp < class T > void write(T x) {
if(O > LIMIT) flush() ;
if(x < 0) {
quq[O ++] = 0x2d ;
x = -x ;
}
do {
ST[++ sz] = x % 0xa ^ 0x30 ;
x /= 0xa ;
} while(x) ;
while(sz) quq[O ++] = ST[sz --] ;
return ;
}
FILEOUT & operator << (int x) {
return write(x) , * this ;
}
FILEOUT & operator << (signed x) {
return write(x) , * this ;
}
FILEOUT & operator << (unsigned x) {
return write(x) , * this ;
}
} out ;
int n , a , b ;
const int maxn = 52 ;
int f[maxn][maxn][maxn][maxn] ;
int g[maxn][maxn] ;
signed main() {
#ifdef _WIN64
freopen("testdata.in" , "r" , stdin) ;
#else
ios_base :: sync_with_stdio(false) ;
cin.tie(nullptr) , cout.tie(nullptr) ;
#endif
// code begin.
in >> n >> a >> b ;
vector < int > v(n) , c(n) ;
for(int i = 0 ; i < n ; i ++) {
in >> v[i] ;
c[i] = v[i] ;
}
unique(c) ; int siz = sz(c) ;
memset(f , 0x3f , sizeof(f)) ;
memset(g , 0x3f , sizeof(g)) ;
for(int i = 0 ; i < n ; i ++) {
v[i] = lower_bound(all(c) , v[i]) - c.begin() ;
f[i][i][v[i]][v[i]] = 0 ;
g[i][i] = a ;
}
for(int len = 1 ; len <= n ; len ++) {
for(int l = 0 ; l + len - 1 < n ; l ++) {
int r = l + len - 1 ;
for(int mn = 0 ; mn < siz ; mn ++)
for(int mx = mn ; mx < siz ; mx ++)
cmin(f[l][r][min(mn , v[r])][max(mx , v[r])] , f[l][r - 1][mn][mx]) ;
for(int k = l ; k < r ; k ++)
for(int mn = 0 ; mn < siz ; mn ++)
for(int mx = mn ; mx < siz ; mx ++)
cmin(f[l][r][mn][mx] , f[l][k][mn][mx] + g[k + 1][r]) ;
for(int mn = 0 ; mn < siz ; mn ++)
for(int mx = mn ; mx < siz ; mx ++)
cmin(g[l][r] , f[l][r][mn][mx] + a + b * (c[mx] - c[mn]) * (c[mx] - c[mn])) ;
}
}
out << g[0][n - 1] << '
' ;
return out.flush() , 0 ;
// code end.
}